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1. In the memoirs of Wiener  [7] on Tauberian theorems it is

pointed out that the closure of the translations in L(— <x>, <x>) of

d /
!{<r-l)T_l

dxXe"

'-Ù
is a necessary and sufficient condition for the Riemann zeta function

f(s) to have no zeros on the line Re s=<r, 0<<t<1.

Salem [4] using

(1 - 2i-)f(s) = £ —^~
n-i       n"

in place of ¡T(s) shows that another necessary and sufficient condition

is that, if/(x) is a bounded measurable function on (0, oo), then

/

?-l

f(x)dx = 0
eax+ 1

for all a (0 <a < oo ) should imply that/ is zero almost everywhere.

Here somewhat different conditions will be considered.

Theorem I. Let X„ be a positive increasing sequence such that

(l.o) è^-=«.
An

A necessary and sufficient condition that Ç(s) have no zeros in the strip

o"i<Re s<a2, where l/2^o-i<o-2^l, is that given any e>0 and a and

ß such that ai<a<ß<a2 there exists an integer N and {an},

n = 1, • • • , N, (depending on e, a and ß) such that

/> a /   N                 g-Xnz \ 2

( E a»-r- - e~x ) (a2""1 + x2^)dx < e.
o   \  i        1 + e-x"* /

A particular case of the above is with X„ = w.

Remark. It is rather trivial to show that if (x2a_1-)-x2,,_1) in (1.1)
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is replaced by x2c_1 for any c, 1/2^c^l, then the left side of (1.1)

can always be made less than e regardless of the location of zeros of

f(s). (See end of paper.)

A result equivalent to Theorem I is the following.

Theorem II. A necessary and sufficient condition that Ç(s) have no

zeros in the strip <7i<Rl s<ff2 is that for any f(x)EL2(0, oo) and a

and ß such that <Ti <o <ß <<r2,

(1.2) f    ——— (x"-1'2 + xP-u2)f(x)dx = 0,        n = 1, 2, • • •
Jo     1 + «_XnI

implies that f(x) is zero almost everywhere on (0, oo). Here X„ satisfies

(1.0) and l/2á«ri<ffíál.

An immediate consequence of Theorem I is that a sufficient condi-

tion for f(s) to have no zeros in the strip (<ri, <r2) is that (1.1) hold with

a = o"i and ß = <r2. Similarly an immediate consequence of Theorem II

is that a sufficient condition for f (s) to have no zeros in the strip

(<ri, ffi) is that (1.2), with a = oi and /3 = <r2, should imply/(x) zero al-

most everywhere. In the case of Theorem II this follows from the

fact that
xa-m -f-  ¡£0-1/2

3*1-1/2 _[- ¡x^î-1/2

is bounded on (0,  oo) and of Theorem I from the boundedness of

(X2«-1 + Xiß-l)/(x2ci-l + &nr*).

It has been pointed out to the author that these results can be de-

rived with the aid of [l ; 2 ; 3]. However it appears desirable to give a

self-contained derivation.

2. The proof that (1.1) is a sufficient condition for f(s) to have no

zeros in the strip (ci, a2) is simple. Indeed for Re s>0

(2.0) r(j)(l - 2»-)r(i) =  f     —-x-irfx.
Jo     1 + e~x

Let f(so) =f(<ro+iro)=0 where o-i<o-0<o-2. Then by (2.0) setting

x=X„y there follows

/> » g-\nV

o     1 + e~^y '

Take c small enough so that <ri<o-o —c<ö-o+c<(r2and takea = (To — c

and ß = <ro + c. Then from (1.1)
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/.eo   /    N g-Xnï \ 2

I     (   £ a»-e" ) (y2'*-20-1 + y2»o+2*-l)áy < €

J a  \   i      1 + e~*n" I

which gives

/i 1  /   N                 g-X»v \ 2
( E «n —-— - e") f^-Hy < t,

o  \  i        1 + e-x»" /

/> x   /   N                  g— X„t/ \ 2
( Z «n-e«) y^o+io-^dy < e.

i   \  i        1 + e-x»B /

From (2.1)

/> <o  /   N                 g—An» \
( E a»-:-e-" ) y"*u^dy.

a   \   i       1 + e-x»" /

Writing the integral above as an integral over (0, 1) plus one over

(1, oo ) and using the Schwartz inequality it follows from (2.2) and

(2.3) that

ai        \i/2        / r°° V"yi°-Hy\    + <1/2(J    y-^dy)

= (t)"''

Since e can be taken arbitrarily small and T(a0+ito) ^0 this is impos-

sible. Thus f(s) cannot vanish2 in the strip <ri<Rl s<<r2.

3. Here the necessity of the condition of Theorem II will be proved;

that is, it will be shown that if f (s) has no zeros in (<ri, <r2) then (1.2)

implies/(x) is zero.

First it will be shown that (1.2) implies that if

/I 00             g—wX-(so-i/2 + xß-in)f(x)dx
o     1 + e-wx

then for Re w>0,

(3.1) 77(w) = 0.

Let w = u+iv. Let c>0. For u^c and 0<x<1/|t>|

Re (1 + e-1"1) = 1 + e~ux cos t;x ^ 1 + e~ux COS 1 ¡£ 1.

2 The trivial character of all such sufficiency proofs seems to indicate that if the

Riemann hypothesis is true the closure theorems do not seem to be a very promising

direction to pursue.
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For x^l/|r|

Re (1 + tT") èl- e-ux £ 1 - «r»/M ^ 1 - «-«/l»l.

Thus for all x>0, u^c,

(3.2) | l + e-»1!  èl- r^W.

For    U gc,    1 —«-«/l»l a; 1 —e-»> 1/2   and   for    \v\^c,   l-e-cl^

^c/2|d| . Thus for small c it follows from (3.2) that

1 1+ |«|
< 2

I 1 + er"* | c

Therefore the integrand for H(w) satisfies

e-"
(x«-1'2 + xP~li2)f(x)

1 + e~
(3.3)

á — (1 + | » | )«-•» | /(*) | max (1, x8"1'2).
c

Using (3.3) in (3.0) and applying the Schwartz inequality it follows

that the integral for H(w) is uniformly convergent for w in any

bounded domain in u^c. Thus H(w) is analytic for u>c and since

c is arbitrary it follows that H(w) is analytic for u>0. Also by the

Schwartz inequality and (3.3)

4 / rx \112
| H(w) |   á — (1 + | w| ) Í   I    <r2cx(l + x^dx)

a co \ 1/2( l/(*)N*J •
In particular if c = 1

(3.4) | H(w)\   = K\ w\ , «èl,

where K is a constant. Applying an inequality of Carleman [6,

p. 130] to H(w) in the half-plane m^I it follows that the sum of the

reciprocals of the real zeros of H(w) for w>2 must converge unless

iTis zero. But by (1.0) this proves (3.1).

Lemma. For any fixed real p there exists a function R(u) continuous

for « > 0 and such that

(3.5) fV*|Ä(«)|
J 0

du < oo
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for all k, <ri<k<a2, and

/g-ux I 1 X
————— Riu)du = exp I — — log2 x + ip log x ).

The proof of this lemma will be given in §4. Let

7 =  f  Riu)Hiu)du
J o

3.7)
/» oo                           p oo           ¿~*x

Riu)du I     -(a"-1'2 + x^>2)fix)dx.
o              J o    1 + e~"x

Using the Schwartz inequality

/» 00                                              y» CO              ê~UX

I Riu) I du I     -x"-1'2 ! fix) I dx

/»oo /    /•»/       g-ul       \2 V'2/    /* °° \1/2

. i**)I*(/.(t+7=)"'-4*) (/. I/Wl*) •

Since

/>w/    e-"1    \2 /•"/    e-"    \2

, (tft=) *~** - »-/. (ttt;) »*<*

/I   00

«-« I Jt(w) I ¿7Í
0

where Ci is a constant. By (3.5) with k =a it follows that /is bounded.

The same proof holds with a replaced by ß. Thus the repeated inte-

gral representing 7 is absolutely convergent and the order of integra-

tion can be inverted. Doing this and using (3.6)

7=|    (x«-1'2 + x0-1/2)/(x) exp (-log2 x+ ip log x\dx.

Setting x=e"

(3.8) I =  f  Giy)ei""dy
J -a

where

Giy) = iea" + ^)fie^)e"l2e-^i2.

Since fiev)evl2EL2i— oo, oo) it follows from the Schwartz inequality

that G{y) is absolutely integrable. On the other hand since H(u) = 0
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it follows from (3.7) that 1 = 0. Since this holds for all real p and since,

by (3.8), I = I(p) is the Fourier transform of G(y) it follows that

G(y) is zero almost everywhere and thus f(x) must be zero almost

everywhere, which proves the necessity of the condition of Theorem

II for f (s) to be free of zeros in (<ri, <r2).

4. Here the lemma will be proved. Let

1      riK+c exp ((s + ip)2/2)u'-1
(4.0) R(u) =- I -ds

i(2*y'2 J_)0O+c   r(i)f(*)(i - 21-)

where c is a constant, Gi<c<a2. It will be shown that R(u) does not

depend on c. Indeed let 5>0 and leto-i+o = cá(r2 —5. It follows easily

from familiar properties of Ç(s) [5, Theorem 9.6B] that if Ç(s) has

no zeros in the strip (Ti<Rl s<a2 then there is a constant A, which

depends on 5, such that if s=a+it then

(4.1) | r(i) | >(2 + | /1 )~\ a + S g <r = <r2 - Ô.

Also since 1/2 ^eri <<r2 ̂ 1 it follows that

\txp((s+ip)2/2)\
(4.2) < -fiTe-l", ffi + ô^o^ffi-ô

T(s)(l - 21-)

for some K which depends on S and p. Thus from (4.0)

/OO

#e-l'l(2+ IíI^m-1^.
-00

Or, there is a B depending on S and p such that

(4.3) |#(«)|   ^ BW-1.

That R(u) does not depend on c for o-i+ô^c^o-2 — 5 follows at once

from the Cauchy integral theorem. Since S is arbitrary R(u) does not

depend on c for <ri<c<o-2.

Given k in (3.5) it follows from (4.3) with c = k + 8i and c = k — Si,

for some sufficiently small 5i>0, that (3.5) holds.

To prove (3.6) let

R(u)-du
o 1 + e-«*

1        /•»      e-"1 /*<00+c exp ((j + ip)2/2)u'~l

'  i(2iryi2J0     1 + e—   M J_iM+c    r(s)f(s)(l - 21-)

Since the repeated integral is absolutely convergent the order may

be inverted to give
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1        C i°e+e  exp (is + ip)2/2)       r °°      e~uz
Fix) m- ^   *' '     ds I     -W-Hu.

ii2*yi2J-iK+c r(s)f(j)(l - 21-')     Ja    1 + r—

Since

/» 00 p—uz

w-1 du = x-«r(i)f(i)(i - 21-«)
o     1 + e-"

it follows that

J /»  «00+1!1 y» ÎX+c

F(*) = -^T^ <exP (5 + iP)*/2)x-ds.
l(2ir)112 J _,„+„

Setting s+ip=iw and using Cauchy's integral theorem

x<p> >»   CO

TYx) = -   - I    ¿-"S/2ar<w¿a>

=- I    e-" /2 exp ( —iw log x) dw = x,pexp (— log 2x/2)

which proves (3.6).

5. If (1.2) implies that/(x) is zero then (1.1) is valid. Indeed (1.2)

implies that any g(x)£L2(0, oo) can be approximated arbitrarily

well in L2(0, oo) by the functions

g—Xnz

(^a-1/2 _|_  a^-1/î).

/' oo I                          JV                    g—\nx

g(x) - £ an-— (x«-1'2 + x*-1'2)
n                     i        1 + e_Xnat

dx < i.

1 + e~x"x

Thus given any e there exist N and an, l^n^N, such that

g-X»*

1+7

Let

g(x) = e-^x""1'2 + x^-x<2).

Then

(xa-1/2 + x^-1'2)2Ji oo /                    JV                   g-Anl      \ 2

I erx - 2 o»-) (a2"-1 + s2"-1) '
o  \            i       1 + i~x»V x*«-l + xiß-l

< t.

Since the numerator of the last term exceeds the denominator (1.1)

follows.

Thus it is seen that if (1.2) implies/(x) is zero then (1.1) holds.

This in turn implies f (s) has no zeros in the strip (o-1( a2) which proves
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the sufficiency of the condition of Theorem II and completes the proof

of Theorem II.

If Ç(s) has no zeros in the strip (o~i, <r2) then (1.2) implies/(x) is

zero which in turn implies that (1.1) holds. Thus (1.1) is a necessary

condition and this completes the proof of Theorem I.

To prove the remark at the end of Theorem I note that the closure

property of the translations in L2(— oo, oo) of Wiener [7] shows that

the functions

e~ax

Xe-112- (0 < a < oo)

1 + er-'

where c is fixed, 1/2 ^c^ 1, are closed in L2(0, oo). Using the result of

§3 based on Carleman's theorem it follows easily that

rc-l/2
e -XnX

1 + e-*nX
(« - 1, 2, - • . )

are closed in L2(0, oo). Thus if g(x)GL2(0, oo), then given any e>0

there exists N and {an} such that

/> =0/   N g—\nx \ 2

, (? «""r+7= - «<«))*<-
Letting g(x) =xc_1/2e— the remark is proved.
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