- 3. E. Helly, Über lineare funktional operationen, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften vol. 121 (1912) pp. 265-297.
- 4. E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, 2d ed., Cambridge, Cambridge University Press, 1921.
- 5. J. A. Shohat and J. D. Tamarkin, The problem of moments, Mathematical Surveys no. 14, New York, 1943.
 - 6. D. V. Widder, The Laplace transform, Princeton University Press, 1941.
- 7. W. H. Young, On multiple integrals, Proc. Roy. Soc. London Ser. A vol. 93 (1916) pp. 28-41.

University of Missouri

ABELIAN RINGS AND SPECTRA OF OPERATORS ON l_p

G. L. KRABBE

1. Introduction. Let l_p denote the set of all sequences $c = \{c_n\}$ such that $||c||_p = (\sum_{n=-\infty}^{\infty} |c_n|^p)^{1/p} < \infty$. If a and c are sequences, the convolution a * c is defined as the sequence $\{b_n\}$ such that

$$[a*c]_n = b_n = \sum_{\nu=-\infty}^{\infty} a_{n-\nu}c_{\nu}$$
 $(n = 0, \pm 1, \pm 2, \pm 3, \cdots).$

Suppose A is a bounded and summable function on the interval $[-\pi, \pi]$, and denote by ΦA the sequence $\{a_n\}$ of Fourier coefficients of A. The "Laurent matrix" (a_{n-p}) represents a transformation A_{p} defined for any c in l_p by $A_{p}c = (\Phi A) * c$. The following properties were proved for p=2 by O. Toeplitz [11] and F. Riesz [8, pp. 171–175]:

- (i) A_{p} is a bounded operator on l_{p} ,
- (ii) if $B(\theta) = [A(\theta)]^{-1}$ defines a bounded function B, then the inverse $(A_{\dagger p})^{-1}$ of $A_{\dagger p}$ exists, and $(A_{\dagger p})^{-1} = B_{\dagger p}$,
- (iii) if A is continuous, then the spectrum $\sigma(A *_p)$ of $A *_p$ is the range of A.

Assume henceforth that p>1. This case was not considered by Toeplitz and Riesz; their results depend on the circumstance² that

Presented to the Society April 15, 1955 under the titles Certain abelian rings of operators on l_p and On the spectra of certain operators on l_p ; received by the editors January 31, 1955 and, in revised form, July 25, 1955 and October 11, 1955.

¹ The range of A is the image $A([-\pi, \pi])$.

² The introductions to [3; 4] contain a concise account of these matters.

 Φ is an isometric mapping of $L^p([-\pi, \pi])$, p=2, onto some l_q , which no longer holds when $p \neq 2$. S. B. Stečkin [10] recently established (i) by restricting A to the set $\mathfrak B$ of functions of bounded variation on $[-\pi, \pi]$.

Suppose $A \in \mathfrak{B}$. The validity of (ii)-(iii) remains to be considered. In this paper, we verify (ii) and prove that, if A is continuous, then $\sigma(A_{f_p})$ is a connected subset of the range of A. The statement (iii) holds when A is in the set \mathfrak{A} of functions analytic on $[-\pi, \pi]$. The proofs hinge on the fact that the set $\{A_{f_p}: A \in \mathfrak{B}\}$ forms an abelian ring isomorphic to \mathfrak{B} .

Let I be the identity function; we shall show that

(iv) if $A \in \mathcal{X}$, then $A_{\sharp p} = A(I_{\sharp p})$ and $A_{\sharp p}$ has no eigenvalues when A is not a constant function.

Here $A(I_{\ell p})$ is to be interpreted in the functionality sense of the Dunford operational calculus. The operator $I_{\ell p}$ is represented by the matrix $(a_{n\nu})$, where $a_{n\nu}=i(-1)^{n+\nu}/(n-\nu)$, $a_{nn}=0$. From (iv) follows that $I_{\ell p}$ has a purely continuous spectrum consisting of the whole interval $[-\pi, \pi]$.

- 1.1. Application. Suppose f belongs to the ring of all functions f whose Laurent series $\sum a_n \lambda^n$ converges absolutely on the circumference $\Gamma_1 = \{\lambda : |\lambda| = 1\}$. Take a fixed number p, p > 1. If f_{\bigstar} denotes the transformation defined by $f_{\bigstar}c = a * c \ (c \in l_p)$, then f_{\bigstar} is a bounded operator on l_p and the spectrum $\sigma(f_{\bigstar})$ is the image $f(\Gamma_1)$ of Γ_1 by f. This generalizes results proved in the Hilbert space case p = 2 by Toeplitz [12; 13], and is easily derived from (i) and (iii) as follows. Set $A(\theta) = f(e^{i\theta})$; then $A(\theta) = \sum a_n e^{in\theta}$, which implies $a = \Phi A$, $f_{\bigstar}c = A_{\dagger p}c$, $f_{\bigstar} = A_{\dagger p}$, and $\sigma(f_{\bigstar}) = \sigma(A_{\dagger p})$. But $A \in \mathfrak{A}$ (since f is analytic on Γ_1); from (i) and (iii) we can now infer that f_{\bigstar} is a bounded operator and $\sigma(A_{\dagger p}) = A([-\pi, \pi])$. The observation $A([-\pi, \pi]) = f(\Gamma_1)$ accordingly yields the conclusion $\sigma(f_{\bigstar}) = f(\Gamma_1)$.
- 2. **Preliminaries.** Denote by \mathfrak{B} the set of all functions whose domains include the closed interval $[-\pi, \pi]$ and which are of bounded variation there. If $A \in \mathfrak{B}$, we define ΦA as the sequence a such that

(1)
$$[\Phi A]_n = a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-in\theta} A(\theta) d\theta$$
 $(n = 0, \pm 1, \pm 2, \pm 3, \cdots).$

Suppose p fixed throughout, and p>1. By Hölder's inequality $|[a*c]_n| \le ||a||_q ||c||_p$ for some q>1. Therefore a*c is defined for any c in l_p , since $a=\Phi A$ implies $||a||_q < \infty$ for any q>1 [2, Theorem 37]. In consequence, the transformation A_f (which was denoted A_{fp} in the Introduction) can be defined by

(2)
$$A \# c = (\Phi A) * c \qquad \text{for any } c \text{ in } l_p.$$

We denote by \mathfrak{E} the ring of all bounded operators on l_p (an operator on l_p is a linear mapping of l_p into itself). Stečkin [10] has proved that (v) if $A \in \mathfrak{B}$, then $A_{\mathfrak{f}} \in \mathfrak{E}$.

2.1. LEMMA. Let S_0 be the set of all sequences c such that $c_n = 0$ for all |n| sufficiently large. If T_1 and T_2 are members of \mathfrak{E} satisfying $T_1c = T_2c$ for all c in S_0 , then $T_1 = T_2$.

PROOF. It is easily shown that S_0 is dense in l_p . The operators T_1 and T_2 , being in \mathfrak{E} , are continuous on l_p ; since they coincide on S_0 , the conclusion follows.

2.2. THEOREM. If A and B are in \mathfrak{B} , then $A \not = B \not = (A \cdot B) \not =$, where $A \cdot B$ is the function C with $C(\theta) = A(\theta) \cdot B(\theta)$.

PROOF. We see from (v) that $T_1 = A_{\sharp}B_{\sharp}$ and $T_2 = (A \cdot B)_{\sharp}$ are members of \mathfrak{E} . In view of 2.1 and $S_0 \subset l_2$, it will therefore suffice to show that $(A_{\sharp}B_{\sharp})x = (A \cdot B)_{\sharp}x$ for all x in l_2 . To that effect, we first recall that [2, (3.1.1)]

(3)
$$(\Phi F) * (\Phi G) = \Phi(F \cdot G)$$
 when $F \in L^2$ and $G \in L^2$.

If $x \in l_2$, it follows from the Fischer-Riesz theorem that there exists a function X in L^2 with $x = \Phi X$. Now $\{A, B\} \subset \mathfrak{B} \subset L^2$ and $B \cdot X \in L^2$ (since B is bounded); keeping (2) in mind, we apply (3) twice in succession to obtain

$$(A_{\dagger}B_{\dagger})x = (\Phi A) * \{(\Phi B) * (\Phi X)\} = (\Phi A) * \{\Phi(B \cdot X)\} = \Phi(A \cdot [B \cdot X]).$$

This concludes the proof, since $(A \cdot B) \neq x = \{\Phi(A \cdot B)\} * (\Phi X) = \Phi([A \cdot B] \cdot X)$ follows again from (3) and $A \cdot B \in L^2$.

- 3. The ring \mathfrak{B}_{f} . From (v) and 2.2 can easily be deduced that the set $\mathfrak{B}_{f} = \{A_{f}: A \in \mathfrak{B}\}$ forms an abelian subring of \mathfrak{E} . The unit element of the ring \mathfrak{B} is the function I^{0} such that $I^{0}(\theta) = 1$; note that $I_{f}^{0} = 1$ (the identity operator). If $A \in \mathfrak{B}$, then A^{-1} is the function B defined by $B(\theta) = [A(\theta)]^{-1}$.
- 3.1. Remark. Suppose $A \in \mathfrak{B}$. If A^{-1} is a bounded function, it is easily seen that $B = A^{-1} \in \mathfrak{B}$, so that $(A_{\ell})^{-1} = (A^{-1})_{\ell} \in \mathfrak{B}_{\ell}$ follows from 2.2 and $A_{\ell}B_{\ell} = I_{\ell}^{0} = 1$.
- 3.2. THEOREM. The linear transformation $A \rightarrow A_{\sharp}$ is an isomorphic mapping of the ring \mathfrak{B} onto the ring \mathfrak{B}_{\sharp} .

PROOF. In view of 2.2, it will be enough to show that the mapping $A \rightarrow A_f$ is one-to-one. If $A_f = B_f$, we can infer from (2) that $(\Phi A) * c$

 $=(\Phi B)*c$, where $c_0=1$ and $c_n=0$ if $n\neq 0$; but a*c=a, and therefore $\Phi A=\Phi B$. This implies that A=B almost-everywhere, and the proof is complete.

- 4. The subring of continuity. Let \Re denote the set of all members of \Re which are continuous on $[-\pi, \pi]$. The sets \Re and $\Re_f = \{A_f: A \in \Re\}$ are provided with the following respective norms; $\|A\| = \sup \{|A(\theta)|: |\theta| \le \pi\}$ when $A \in \Re$, and $\|T\| = \sup \{\|Tc\|_p: \|c\|_p \le 1\}$ when $T \in \Re_f$. We recall that $Z = \lim X_s$ when $\lim \|Z X_s\| = 0$. If $\sigma(X)$ denotes the spectrum of an element X of a Banach algebra [5, p. 97], it is easily checked that $\sigma(A)$ is the range $A([-\pi, \pi])$ of A, whenever $A \in \Re$.
- 4.1. THEOREM. The set $\Re *$ forms an irreducible ring, in the sense that 1 and 0 are the only members T of $\Re *$ such that $T^2 = T$.

PROOF. Suppose $T^2 = T \in \Re_f$. Then $T = A_f = (A_f)^2$, and a successive application of 2.2 and 3.2 yields $A_f = (A^2)_f$ and $A = A^2$. Now \Re forms an irreducible ring [6, p. 417 (11)], and consequently $A = I^0$ or A = O; thus, either $T = I_f^0 = 1$ or $T = O_f = O$.

4.2. THEOREM. If $C \in \mathbb{R}$, then $\sigma(C_{\sharp})$ is a connected subset of $\sigma(C)$. In case $\lambda \notin \sigma(C)$, then $(\lambda 1 - C_{\sharp})^{-1} = (A^{-1})_{\sharp} \in \mathbb{R}_{\sharp}$ where $A = \lambda I^{0} - C$.

PROOF. Suppose $\lambda \oplus \sigma(C)$; then $\lambda - C(\theta) = A(\theta) \neq 0$ for all $|\theta| \leq \pi$, whence $(\lambda I^0 - C)^{-1} = A^{-1} \in \Re \subset \Re$, and $(\lambda 1 - C)^{-1} = (A_{\mathfrak{f}})^{-1} = (A^{-1})_{\mathfrak{f}}$ now follows from 3.1. Thus $\lambda \oplus \sigma(C_{\mathfrak{f}})$ when $\lambda \oplus \sigma(C)$, and we have proved that $\sigma(C_{\mathfrak{f}}) \subset \sigma(C)$. Lorch [6, Theorem 2] has shown that the spectrum of any member of an irreducible ring is connected. A reference to 4.1 now completes the proof.

4.3. LEMMA. Suppose $\{F_s\}$ is a family of members of \mathfrak{B} . If $A \in \mathfrak{B}$, $A = \lim_{s \to \infty} F_s$, and $T = \lim_{s \to \infty} (F_s)_{\mathfrak{f}}$, then $A_{\mathfrak{f}} = T$.

PROOF. Take $m, n = 0, \pm 1, \pm 2, \cdots$. From (1) follows that

$$[\Phi A]_m = \lim_{s \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-im\theta} F_s(\theta) d\theta = \lim_{s \to \infty} [\Phi \{F_s\}]_m.$$

Thus, if $x \in S_0$,

$$[(\Phi A) * x]_n = \sum_{\nu=-\infty}^{\infty} [\Phi A]_{n-\nu} x_{\nu} = \lim_{s\to\infty} [(\Phi \{F_s\}) * x]_n.$$

In view of (2), this can be written $[A_{\sharp x}]_n = \lim_{n \to \infty} [(F_{\sharp})_{\sharp x}]_n$. On the other

³ Note that $A = \lim_{\epsilon \to 0} F_{\epsilon}$ if and only if the sequence $F_{\epsilon}(\theta)$ converges uniformly to $A(\theta)$ on $[-\pi, \pi]$.

hand, $[Tx]_n = \lim_{n \to \infty} [(F_n)_n x]_n$ follows directly from our hypothesis. Combining results, we obtain

$$A_{\#}x = Tx \qquad \text{for all } x \text{ in } S_0.$$

But $A_{\sharp} \subset \mathfrak{F}$ and $T \subset \mathfrak{F}$ (since the $(F_{\sharp})_{\sharp}$ are in the complete space \mathfrak{F}). The conclusion now follows from (4) and 2.1.

5. The subring of analyticity. We say that A is analytic on $[-\pi, \pi]$ if A is holomorphic on an open rectangle $\Re(A) \supset [-\pi, \pi]$. Let \mathfrak{A} be the set of all such functions. Note that $\mathfrak{A} \subset \Re \subset \mathfrak{B}$, whence $\{A_{\mathfrak{f}}: A \in \mathfrak{A}\}$ $\subset \Re_{\mathfrak{f}} \subset \mathfrak{B}_{\mathfrak{f}}$; each of these three sets is a subring of \mathfrak{E} .

Suppose $A \in \mathfrak{A}$. There exists therefore a sequence $\{F_s\}$ of polynomials such that [9, p. 177 (2.2)]

(a) the sequence $F_s(\lambda)$ converges uniformly to $A(\lambda)$ on each closed subset of $\Re(A)$.

Let I denote the function $I(\theta) = \theta$; clearly $I \in \Re$ and from 4.2 follows that $\sigma(I_f) \subset \sigma(I) = [-\pi, \pi]$. Given any B in \mathfrak{A} , the Dunford operational calculus associates with the bounded operator I_f a member $B(I_f)$ of \mathfrak{E} by means of the equation

(5)
$$B(I_{f}) = \frac{1}{2\pi i} \int B(\lambda)(\lambda 1 - I_{f})^{-1} d\lambda, \qquad \lambda \in K,$$

where K is the boundary of a rectangle $\mathfrak{D}(A) \supset [-\pi, \pi]$ whose closure is included in $\mathfrak{R}(A)$. In case $B(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n$ is an entire function, then [1, 2.8]

(6)
$$B(I_{f}) = \sum_{n=0}^{\infty} a_{n} I_{f}^{n} = \lim_{s \to \infty} \sum_{n=0}^{s} a_{n} I_{f}^{n}.$$

From (a) follows that4

(7)
$$A(I_f) = \lim_{s \to \infty} F_s(I_f) \qquad (s \to \infty).$$

We shall also need the following result [1, 2.9]

(8)
$$A(\sigma(I_f)) = \{A(\lambda) : \lambda \in \sigma(I_f)\} = \sigma(A(I_f)) \quad (A \in \mathfrak{A}).$$

5.1. THEOREM. If $A \in \mathfrak{A}$, then $A_{\dagger} = A(I_{\dagger})$.

PROOF. Observe that I^n is the function $I^n(\theta) = \theta^n$, so that the polynomial F_s can be written as a finite sum $\sum a_n^{(s)} I^n$ of functions. From 3.2 follows $(F_s)_f = \sum a_n^{(s)} I_f^n = F_s(I_f)$ (for the last equality, use (6)), which enables us to deduce from (7) that $A(I_f) = \lim_{n \to \infty} (F_s)_f$. On the

⁴ See [7, p. 29]; (7) is an immediate consequence of (5). For a more general viewpoint involving (a) and the derivation of (7), see [5, p. 121].

other hand, $A = \lim F_s$ is a consequence of (a), and the conclusion is now obtained from 4.3.

6. The Titchmarsh operator. It is easily verified that I_{\bullet} maps every member c of l_{\bullet} on some sequence b such that

$$[I_{f}c]_{n} = b_{n} = \sum_{\nu=-\infty, \nu\neq n}^{\infty} \frac{i(-1)^{n+\nu}}{n-\nu} c_{\nu} \quad (n=0, \pm 1, \pm 2, \pm 3, \cdots).$$

By 5.1 and (6), the function E^{α} defined by $E^{\alpha}(\theta) = e^{-i\alpha\theta}$ satisfies

(9)
$$E_{\dagger}^{\alpha} = E^{\alpha}(I_{\dagger}) = \sum_{n=0}^{\infty} a_{n} I_{\dagger}^{n}; \qquad a_{n} = (-i\alpha)^{n}/n!.$$

From 2.2 we have $E_{\mathbf{i}}^{\alpha}E_{\mathbf{i}}^{\lambda}=(E^{\alpha}\cdot E^{\lambda})_{\mathbf{i}}=E_{\mathbf{i}}^{\alpha+\lambda}$ for complex α and λ ; this was first proved by Titchmarsh in a special case. Suppose $\alpha=0,\pm 1,\pm 2,\pm 3,\cdots$; it is readily verified that $E_{\mathbf{i}}^{\alpha}$ maps any $c=\{c_n\}$ of l_p on the sequence $\{b_n\}$ such that

(10)
$$[E_{fG}^{\alpha}]_n = b_n = c_{n+\alpha}$$
 $(n = 0, \pm 1, \pm 2, \pm 3, \cdots).$

- 6.1. NOTATION. When $T \in \mathfrak{F}$, then λ is in the point spectrum p(T) of T if $Tc = \lambda c$ for some c in l_p with $c \neq o$ (where o is the sequence x having $x_n = 0$ for all n).
 - 6.2. THEOREM. $p(I_{\#}) = 0$.

PROOF. By way of contradiction, assume $\theta \in p(I_f)$. Then $I_f c = \theta c$ for some c in l_p with $c \neq o$, whence $Ic_f^n = \theta^n c$. From (9) now follows $E_f^{\alpha} c = \sum_{n=0}^{\infty} a_n I_f^n c = (\sum_{n=0}^{\infty} a_n \theta^n) c$. Therefore $E_f^{\alpha} c = E^{\alpha}(\theta) c$ and $c_m \neq 0$ for some m (since $c \neq o$). Accordingly, $c_{m+\alpha} = E^{\alpha}(\theta) c_m$ (by (10)), and $|c_{m+\alpha}| = |E^{\alpha}(\theta)| |c_m|$. But $c \in l_p$ and $|E^{\alpha}(\theta)| = 1$, which implies the absurdity

$$\infty > \|c\|_p^p = \sum_{\alpha=-\infty}^{\infty} |c_{m+\alpha}|^p = \sum_{\alpha=-\infty}^{\infty} |c_m|^p = \infty.$$

6.3. THEOREM. The spectrum $\sigma(E_{\sharp}^1)$ is the whole circumference Γ_1 of the unit circle $|\lambda| = 1$.

PROOF. Suppose $\lambda \in \Gamma_1$, and write $T_{\lambda} = \lambda 1 - E_{\ell}^1$. It will suffice to exhibit a sequence $\{u_{\ell}\}$ such that

(11)
$$\{u_s\} \subset l_p \text{ and } \lim_{s \to \infty} \|u_s\|_p^{-p} \|T_\lambda u_s\|_p^p = 0.$$

⁵ See G. L. Krabbe, The Titchmarsh semi-group, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 219-225.

Indeed, this ensures that $\lambda \in \sigma(E_{\sharp}^1)$ (see [5, 2.14.3]); therefore $\Gamma_1 \subset \sigma(E_{\sharp}^1) \subset \sigma(E^1) = \Gamma_1$ (the last inclusion follows from 4.2), which concludes the proof.

Set $r_s = \exp(-1/s)$, and define u_s as the sequence b such that $b_n = (\lambda \cdot r_s)^n$ if $n \ge 0$, while $b_n = 0$ when n < 0. When s > 0 we thus have $0 < r_s^p < 1$ and

$$||u_s||_p^p = \sum_{n=0}^{\infty} (r_s^p)^n = (1 - r_s^p)^{-1} < \infty.$$

On the other hand, $[T_{\lambda}b]_n$ equals -1 if n=-1, and otherwise equals $\lambda b_n - b_{n+1} = b_n \lambda (1-r_s)$ (see (10)). Consequently,

$$||u_s||_p^{-p} \cdot ||T_\lambda u_s||_p^p = (1-r_s^p) + |1-r_s|^p,$$

which approaches zero when $s \rightarrow \infty$. Thus (11) is satisfied, and the proof is completed.

6.4. THEOREM.⁶
$$\sigma(I_{f}) = [-\pi, \pi]$$

PROOF. Let $\mathfrak{N} < \mathfrak{M}$ stand for $\mathfrak{N} \subset \mathfrak{M}$, $\mathfrak{N} \neq \mathfrak{M}$. From 4.2 follows that $\sigma(I_{\sharp})$ is a connected subset of $\sigma(I) = [-\pi, \pi]$; being a closed set, $\sigma(I_{\sharp})$ must be a closed interval \mathfrak{G} included in $[-\pi, \pi]$. Suppose $\mathfrak{G} \neq [-\pi, \pi]$. We then have $\mathfrak{G} < [-\pi, \pi]$, whence $\mathfrak{G} < \mathfrak{G}' < [-\pi, \pi]$ for some interval \mathfrak{G}' ; but E^1 is then a one-to-one mapping of \mathfrak{G}' into Γ_1 , so that $E^1(\mathfrak{G}) < E^1(\mathfrak{G}') \subset \Gamma_1$. Recalling that $\mathfrak{G} = \sigma(I_{\sharp}^1)$, we have $E^1(\mathfrak{G}) = \sigma(E^1(I_{\sharp})) = \sigma(E^1_{\sharp})$ by (8) and 5.1, whence $\sigma(E)^1_{\sharp} < \Gamma_1$, which contradicts 6.3 and thus disproves our assumption $\mathfrak{G} \neq [-\pi, \pi]$.

- 7. Conclusion. Suppose $A \in \mathfrak{A}$. From (8) and 5.1 it follows that $A(\sigma(I_{\mathbf{f}})) = \sigma(A_{\mathbf{f}})$; by 6.4 we have $A([-\pi, \pi]) = \sigma(A_{\mathbf{f}})$, and therefore $\sigma(A_{\mathbf{f}})$ is the analytic curve $\sigma(A)$ (since $\sigma(A)$ is the image of $[-\pi, \pi]$ by A). Note that
- (vi) if A is real-valued, then $\sigma(A_{\#}) = [\alpha_1, \alpha_2]$, where α_1 and α_2 are the extrema of $A(\theta)$ when $|\theta| \leq \pi$.

This is the form of the corresponding Hilbert space result of Toeplitz, as given by F. Riesz [8, p. 153].

7.1. THEOREM. If $A \in \mathfrak{A}$, then $p(A_{\mathfrak{f}})$ has at most one member; if A is not a constant, then $p(A_{\mathfrak{f}})$ is empty.

PROOF. Suppose first that A is a constant: $A \in \mathfrak{A}_0 = \{\zeta I^0 : \zeta \text{ complex}\}$. Then $A_f = \zeta 1$ (see §3) and $p(A_f) = \{\zeta\}$. Next, assume $A \in \mathfrak{A}_0$

⁶ The author is much indebted to Professor C. B. Morrey, Jr., who first proved this result.

and $\mu \in p(A_f)$. Accordingly, the function $C(\lambda) = \mu - A(\lambda)$ does not vanish everywhere on the rectangle $\mathfrak{R}(A)$ of §5; but C is analytic on $\mathfrak{R}(A)$ and has therefore the finite collection $\{\alpha_n : n\}$ of zeros in the rectangle $\mathfrak{D}(A)$ described in §5. The function $B(\lambda) = [C(\lambda)]^{-1} \prod_n (\alpha_n - \lambda)$ is analytic⁷ on $\mathfrak{D}(A)$, so that $B \in \mathfrak{B}$. In view of 2.2, we can now deduce from $B \cdot C = B \cdot (\mu I^0 - A) = \prod_n (\alpha_n I^0 - I)$ that

$$B_{\ell}(\mu 1 - A_{\ell})c = \left[\prod_{n} (\alpha_{n} 1 - I_{\ell})\right]c$$
 for all c in l_{p} .

But $(\mu 1 - A_f)c = o$ for some $c \neq o$ (since $\mu \in p(A_f)$). Consequently $o = [\prod_n (\alpha_n 1 - I_f)]c$; this implies $(\alpha_n 1 - I_f)c = o$ for some n, whence the contradiction $\alpha_n \in p(I_f)$ of 6.2.

BIBLIOGRAPHY

- 1. N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math-Soc. vol. 54 (1943) pp. 185-217.
- 2. G. H. Hardy and W. W. Rogosinski, Fourier series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 38, Cambridge, 1950.
- 3. P. Hartman and A. Wintner, The spectra of Toeplitz's matrices, Amer. J. Math. vol. 76 (1954) pp. 867-882.
- 4. —, On the spectra of Toeplitz's matrices, Amer. J. Math. vol. 72 (1950) pp. 359-366.
- 5. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications vol. 31, New York, 1948.
- 6. E. R. Lorch, The theory of analytic functions in normed abelian vector rings, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 414-425.
- 7. R. S. Phillips, Semi-groups of operators, Bull. Amer. Math. Soc. vol. 61 (1955) pp. 16-33.
- 8. F. Riesz, Les systèmes d'équations linéaires à une infinité d'inconnues, Paris, 1913.
- 9. S. Saks and A. Zygmund, Analytic functions, Monografie Matematyczne, Warsaw, 1952.
- S. B. Stečkin, On bilinear forms, C. R. (Doklady) Acad. Sci. URSS. N. S. vol. 71 (1950) pp. 237–240.
- 11. O. Toeplitz, Zur Theorie der quadratischen Formen von unendlichvielen Veränderlichen, Nachr. Ges. Wiss. Göttingen (1910) pp. 489-506.
- 12. ——, Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen, Math. Ann. vol. 70 (1911) pp. 351-376.
- 13. ——, Zur Transformation der Scharen bilinearer Formen von unendlichvielen Veränderlichen, Nachr. Ges. Wiss. Göttingen (1907) pp. 110-115.

PURDUE UNIVERSITY

⁷ Each factor $(\alpha_n - \lambda)$ is repeated m_n times $(m_n$ is the multiplicity of the point α_n). Note that there exists some α_n , since $\mu \subset p(A_{\frac{1}{2}}) \subset \sigma(A(I_{\frac{1}{2}})) = A(\sigma(I_{\frac{1}{2}}))$, which implies $\mu - A(\alpha_n) = 0$ for some α_n in $\sigma(I_{\frac{1}{2}}) \subset \mathfrak{D}(A)$.