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ABELIAN RINGS AND SPECTRA OF OPERATORS ON lp

G. L. KRABBE

1. Introduction. Let lp denote the set of all sequences c= \cn} such

that ||c||j) = (23"--°o lc»| p)Up< ». If a and c are sequences, the con-

volution a * c is defined as the sequence {bn} such that

Ob

[a*c]n = bn =   23 an-,c„ (n = 0, ±1, ±2, ±3, • • • )•
»=-00

Suppose i is a bounded and summable function on the interval

[—x, it], and denote by $A the sequence [an] of Fourier coefficients

of A. The "Laurent matrix" (a„_„) represents a transformation Atp

defined for any c in lp by Afpc=($A) *c. The following properties

were proved for p = 2 by O. Toeplitz [ll] and F. Riesz [8, pp. 171-

175]:
(i) Afp is a bounded operator on lp,

(ii) if B(9) = [¿4(0)]_1 defines a bounded function B, then the inverse

(Atp)-1 of Afp exists, and (Afp)-1 = Bfp,

(iii) if A is continuous, then the spectrum a(Atp) of AtP is the range1

of A.
Assume henceforth that p>l. This case was not considered by

Toeplitz and Riesz; their results depend on the circumstance2 that
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1 The range of A is the image A([ — w, ir]).

2 The introductions to [3; 4] contain a concise account of these matters.
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í> is an isometric mapping of Lp([ — ir, tt]), p = 2, onto some lq, which

no longer holds when p7£2. S. B. Steckin [lO] recently established

(i) by restricting A to the set 33 of functions of bounded variation on

[-7T, t].

Suppose A £33. The validity of (¡i)-(iii) remains to be considered.

In this paper, we verify (ii) and prove that, if A is continuous, then

cr(Afp) is a connected subset of the range of A. The statement (iii)

holds when A is in the set 21 of functions analytic on [— w, t]. The

proofs hinge on the fact that the set {Afp: .4£33} forms an abelian

ring isomorphic to 33.

Let / be the identity function; we shall show that

(iv) if A E^i, then Atp=A(Itp) and Afp has no eigenvalues when A

is not a constant function.

Here A(ItP) is to be interpreted in the functionality sense of the

Dunford operational calculus. The operator Itp is represented by the

matrix (anp), where a„v = i( — \)n+"/(n — v), a„„ = 0. From (iv) follows

that Ifp has a purely continuous spectrum consisting of the whole

interval [— tr, t],

1.1. Application. Suppose/ belongs to the ring of all functions/

whose Laurent series 22añ^n converges absolutely on the circumfer-

ence Ti= {X: |\| =1 J.Take a fixed number p,p>l.lifir denotes the

transformation defined by f+c = a*c (cElP), then/* is a bounded

operator on lp and the spectrum <x(f+) is the image f(J^i) of Ti by /.

This generalizes results proved in the Hubert space case p = 2 by

Toeplitz [12; 13], and is easily derived from (i) and (iii) as follows.

Set A(6)=f(eie); then A(6) = 2>»ei*'9. which implies a=$A, f+c

= Atpc,fir=Atp, and <r(/*) =cr(Atp). But A £21 (since/is analytic on

Ti); from (i) and (iii) we can now infer that/* is a bounded operator

and o(Afp)=A([—Tr, w]). The observation A([—ir, Tr])=f(Vi) ac-

cordingly yields the conclusion <r(/+) =/(Fi).

2. Preliminaries. Denote by 33 the set of all functions whose do-

mains include the closed interval [— ir, w] and which are of bounded

variation there. If A £93, we define $A as the sequence a such that

(1)     [$A]n = an = — f   e-in6Aid)dd       (n = 0, ±1, ±2, ±3, • • ■ ).

Suppose p fixed throughout, and p>\. By Holder's inequality

| [a*c]„| ^||a||,||c||p for some q>\. Therefore a*c is defined for any

c in lp, since a—^A implies ||a||a< °° for any q>\ [2, Theorem 37].

In consequence, the transformation At (which was denoted Atv in the

Introduction) can be defined by
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(2) Ate — ($A) * c for any c in lp.

We denote by (5 the ring of all bounded operators on lp (an operator

on lp is a linear mapping of lp into itself). Steckin [lO] has proved that

(v) if AE®, then AtE&.

2.1. Lemma. Let So be the set of all sequences c such that cn = 0for all

| n | sufficiently large. If Ti and T2 are members of <& satisfying Tic = T2c

for all ein So, then Ti = T2.

Proof. It is easily shown that So is dense in lp. The operators Pi

and T2, being in (§, are continuous on lp; since they coincide on So, the

conclusion follows.

2.2. Theorem. If A and B are in S3, then AtBt = (A-B)t, where

AB is the function C with C(9) =A(9)-B(9).

Proof. We see from (v) that Tx=AtBt and T2 = (A -B)t are mem-

bers of @. In view of 2.1 and SoEk, it will therefore suffice to show

that (AfBf)x = (A -B)tx for all x in l2. To that effect, we first recall

that [2, (3.1.1)]

(3) ($P) * (*G) = $(F-G) when F E L2 and G E L2.

If xEh, it follows from the Fischer-Riesz theorem that there exists

a function X in L2 with x=<f?X. Now {A, B] C$CP2 and B-XELi
(since B is bounded); keeping (2) in mind, we apply (3) twice in suc-

cession to obtain

(AtBt)x= ($4).{($B)*($jr)} = (*A)* {$(B-X)\ = $(A-[B-X]).

This    concludes    the    proof,    since    (A -B)tx= {$(A -B)} * ($X)

= $([A-B]-X) follows again from (3) and A-BEL2.

3. The ring 33#. From (v) and 2.2 can easily be deduced that the

set $8t={Af: AE%$} forms an abelian subring of @. The unit ele-

ment of the ring 58 is the function 7° such that I°(9) = 1 ; note that

P# = l (the identity operator). If -4G93, then A*1 is the function B

defined by B(9) = [A(9)]~\

3.1. Remark. Suppose AE$5- If A-1 is a bounded function, it is

easily seen that B=A~1E^, so that (^4#)_1 = (^4-1)#GS3# follows from

2.2 and AfBf = T} = l.

3.2. Theorem. The linear transformation A—>At is an isontorphic

mapping of the ring S8 onto the ring Í8#.

Proof. In view of 2.2, it will be enough to show that the mapping

A^>A# is one-to-one. If At = Bf, we can infer from (2) that ($A) *c
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= ($B) *c, where co = l and c„ = 0 if n^O; but a*c = a, and therefore

$A =$B. This implies that A =B almost-everywhere, and the proof

is complete.

4. The subring of continuity. Let Ä denote the set of all members

of 33 which are continuous on [—ir, iv]. The sets $ and ®t

= {At: AE&\ are provided with the following respective norms;

¿||=sup {|4(0)|: M^tt} when AESt, and ||r||=sup {||re||,:
c||p^l} when TE®t. We recall that Z = lim X, when lim ||Z-X„||

= 0. If ct(X) denotes the spectrum of an element X of a Banach alge-

bra [5, p. 97], it is easily checked that a(A) is the range A ([— it, ir])

of A, whenever A £$.

4.1. Theorem. The set $# forms an irreducible ring, in the sense

that 1 and O are the only members T of $t such that T2 = T.

Proof. Suppose r2 = F£$#. Then T — At = (Af)2, and a successive

application of 2.2 and 3.2 yields At = (A2)t and A =A2. Now $ forms

an irreducible ring [6, p. 417 (11)], and consequently A = Io or A = O;

thus, either T = l\ = l or T= 0#= O.

4.2. Theorem. If CE$, then o(C#) is a connected subset of <r(C). In

case X£<r(C), then (Kl-Ct)-1 = (A-1)iE^i where A =\P-C.

Proof. Suppose X£cr(C); then \-C(6) =A(d)^0 for all \d\ ^w,

whence (XI°-C)-1=^-1£Ä£33, and 0J-C)-*-(¿#)-»-(ii-»)#
now follows from 3.1. Thus X£<r(C#) when \E<riC), and we have

proved that o-(C#)C<r(C). Lorch [6, Theorem 2] has shown that the

spectrum of any member of an irreducible ring is connected. A refer-

ence to 4.1 now completes the proof.

4.3. Lemma. Suppose {F,} is a family of members of 33. If A £33,
A =lim,<eo F„ and T = lima_>K (Fs)#, then At = T.

Proof. Take m, n = 0, ±1, ±2, ■ ■ • . From (1) follows3 that

[*A]m = lim— f   e-imeFaie)dd = lim [*{F.}]m.

Thus, if x£5o,

[i$A)*x]n =   ¿ [*i4]_,*, = lim [(${F„})*x]n.
r—go s-»"

In view of (2), this can be written [^4#x]B = lim [(F,)#x]„. On the other

* Note that A =lim F, if and only if the sequence F.(6) converges uniformly to

A(e) on [-Tr, «•].
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hand, [Px]n = lim [(P,)¡px]„ follows directly from our hypothesis.

Combining results, we obtain

(4) Atx = Tx for all x in So.

But AtE& and PGS (since the (Fe)t are in the complete space (g).

The conclusion now follows from (4) and 2.1.

5. The subring of analyticity. We say that A is analytic on [—x, x]

if A is holomorphic on an open rectangle (R(.4)D [— x, x]. Let 21 be

the set of all such functions. Note that 21C$C*Ö, whence {At: A G H}

C$#C33#; each of these three sets is a subring of (5.

Suppose A E 21. There exists therefore a sequence {P„} of poly-

nomials such that [9, p. 177 (2.2)]

(a)    the sequence F3(\) converges uniformly to A(X) on each closed sub-

set of (R(A).

Let I denote the function 1(9) =9; clearly 7G$ and from 4.2 follows

that a(It)Ea(I)= [— x, x]. Given any B in 21, the Dunford opera-

tional calculus associates with the bounded operator It a member

B(It) of S by means of the equation

(5) B(U) =—( B(\)(\l - m-'dX, \EK,
2irtJ

where K is the boundary of a rectangle 2D(^4)D [— x, x] whose closure

is included in (R(A). In case B(\) = 23»-o fl»A" is an entire function,

then [l, 2.8]

00 s

(6) B(Ii) = 23 a*Jt  = Hm  23 a»I*-
n-0 s-*°°      n=0

From (a) follows that4

(7) A (It) = lim Fs(It) (j^oo).

We shall also need the following result [l, 2.9]

(8) A(o-(It)) = {A(\): X G c(It) ) = a(A(It))        (A E 21).

5.1. Theorem. 7/4G2I, then At = A(It).

Proof. Observe that In is the function I"(9) =9n, so that the poly-

nomial P8 can be written as a finite sum 23a»1 P1 of functions. From

3.2 follows (P.)# = 23a4s)Pr; = P«(Pr) (lor the last equality, use (6)),

which enables us to deduce from (7) that A(It)= lim (F,)t. On the

4 See [7, p. 29]; (7) is an immediate consequence of (5). For a more general view-

point involving (a) and the derivation of (7), see [5, p. 121].
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other hand, A =lim F, is a consequence3 of (a), and the conclusion

is now obtained from 4.3.

6. The Titchmarsh operator. It is easily verified that It maps

every member c of lp on some sequence b such that

[Itc]n = bn=      ¿     -—-c,     (» = 0, ±1, ±2, ±3, •••)•

By 5.1 and (6), the function Ea defined by E"(9) =e~iaB satisfies

oo

(9) EÏ = Ea(It) = 23 aJt; an = (-ia)»/n\.
n-0

From 2.2 we have E¡E) = (E"-E^)t = P?+X for complex a and X; this

was first proved by Titchmarsh in a special case.6 Suppose a = 0, +1,

±2, ±3, • • • ; it is readily verified that Ef maps any c = \cn} of lp

on the sequence {bn} such that

(10) [EÏc]n = bn = cn+a (n = 0, ±1, ±2, ±3, • • • )•

6.1. Notation. When PG@, then X is in the point spectrum p(T)

of T if Tc=\c for some c in ¿p with ct^o (where o is the sequence x

having xn = 0 for all n).

6.2. Theorem. p(lt)=0.

Proof. By way of contradiction, assume 9Ep(It). Then Itc=9c

for some c in lp with c^o, whence Icf=9nc. From (9) now follows

P#c=23"-o a»/#c = (23"-o on0n)c. Therefore Elc = Ea(6)c and cm^0

for some m (since cs¿o). Accordingly, cm+a = Ea(9)cm (by (10)), and

|cm+„| =|£°(0)| \cm\. But c6l, and ¡£"(ö)| =1, which implies the

absurdity
OO 00

^        II      II P V^      I \P \~*      I lP
00   >   llCIU=    ¿-I    \Crn+a\      =    2-,    I  C™. \      =    °° •

or=—oo a-«—oo

6.3. Theorem. PAe spectrum a(Ex¡) is the whole circumference Yx of

the unit circle | X | = 1.

Proof. Suppose XGTi, and write T\=\l—E\. It will suffice to

exhibit a sequence {us} such that

(11) {u,}ElP   and    lim ||«.||7||rx«.||p = 0.

6 See G. L. Krabbe, The Titchmarsh semi-group, Proc. Amer. Math. Soc. vol. 6

(1955) pp. 219-225.
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Indeed, this ensures that X£<r(F}) (see [5, 2.14.3]); therefore

TiC<r(Ej)Co-(E1)=Ti (the last inclusion follows from 4.2), which

concludes the proof.

Set r, = exp ( — 1/s), and define u, as the sequence b such that

&n = (Xr,)n if m^O, while b„ = 0 when «<0. When s>0 we thus have

0<r,p<l and

iwi;-£<rr)"-(i-ri)"l<«».

On the other hand, [F\è]„ equals — 1 if «= — 1, and otherwise equals

X6„—Z>„+i = è„X(l— r,) (see (10)). Consequently,

||«.|ir-||2,x«.||ï = (l-r?) + |l-r.f,

which approaches zero when s—»00. Thus (11) is satisfied, and the

proof is completed.

6.4. Theorem.6 o-(It) = [—ir, ir.]

Proof. Let 9IOTC stand for 31C3TC, 31^311. From 4.2 follows that

<r(It) is a connected subset of a(I) = [—ir, ir]; being a closed set,

a (It) must be a closed interval é included in [—ir, ir]. Suppose

â^ [—ir, ir]. We then have â< [—ir, ir], whence d<â'< [—ir, ir] for

some interval d'; but E1 is then a one-to-one mapping of 3' into Ti,

so that El(á)<El(á')CTi. Recalling that á = <r(I¡), we have El(t$)

= cr(E1(Ii))=o-(E¡) by (8) and 5.1, whence o-(E)j<Tu which contra-

dicts 6.3 and thus disproves our assumption a¿¿ [— ir, ir].

7. Conclusion. Suppose A £21. From (8) and 5.1 it follows that

A(o(It))=a(At); by 6.4 we have ^4([—ir, ir]) =o-(Af), and therefore

a(At) is the analytic curve <r(.4) (since a(A) is the image of [— ir, ir]

by A). Note that
(vi) if A is real-valued, then a(At)= [ai, at], where ai and a2 are the

extrema of A (9) when \d\ ^ir.

This is the form of the corresponding Hubert space result of Toeplitz,

as given by F. Riesz [8, p. 153].

7.1. Theorem. If A £21, then p(At) has at most one member; if A is

not a constant, then p(At) is empty.

Proof. Suppose first that A is a constant: ^4£2ío= {f/°: f com-

plex}. Then At=Çl (see §3) and p(At) = {f}. Next, assume ¿4£2Io

9 The author is much indebted to Professor C. B. Morrey, Jr., who first proved

this result.
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and ßEp(At). Accordingly, the function C(\) =ll —A (X) does not van-

ish everywhere on the rectangle (R(A) of §5; but C is analytic on (R(A)

and has therefore the finite collection {«„:«} of zeros in the rectangle

S>(A) described in §5. The function P(X) = [C(X)]-xn» K~X) is
analytic7 on S)(A), so that S Go. In view of 2.2, we can now deduce

from BC = B-(pP-A) = J[n (anP-I) that

Bt(p.l — At)c = \   YL (anl — If) \c        for all c in lp.

But (jul— At)c = o for some c^o (since ¡xEp(At)). Consequently

o= [JJ„ (anl— If)]c; this implies (anl—It)c = o for some n, whence

the contradiction anEp(It) of 6.2.
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7 Each factor (an—X) is repeated m„ times (m„ is the multiplicity of the point «„)•

Note that there exists some «„, since itEp(At)Eo{A{If)) =A(a(If)), which implies

It — A(an) =0 for some a„ in <r(If)E£>(A).


