
PARTITIONS OF MULTI-PARTITE NUMBERS

E. M. WRIGHT

1. Introduction. In what follows all small latin letters denote non-

negative rational integers. We suppose for the present that |X,-| <1

(lá*=j) and write

Fi(Y) = F,(Xi, • • • , Xfi Y) = II (1 + x"i  ■ ■ ■ X*Y)

and

G¿Y) = {FX-F)}-1 = II (1 - Xi1 ■ ■ ■ Xk/Y)-\

where the products extend over all non-negative ki, • ■ • , k¡. If

| F| <1, we have

G,{Y) = 1 + ¿0,(»)F»,
n-l

where

00

Qi(n) = Qi(Xu • • • , Xf,n) =       X       Ç(«i. " * ' . n¡;n)Xi1 ■ • • X/
ni, * -. ,ny=0

and q(nu • • ■ , n,; n) is the number of partitions of the /-partite

number («i, • • • , n¡) into just « parts, that is the number of solu-

tions of the "vector" equation (or equation in single row matrices)

n

(1) Z) (Xlk, • • •  ,  Xjk)  =   (»1,  • ■ •  , «))■
k=l

The order of the vectors on the left-hand side of (1) is irrelevant.

Again

Fi(Y) = 1 + ¿ Ri(n)Y",
71=1

where

Ri(n) = X) r(nh • • ■ . n¡;n)Xni  • • • X/

and r(«i, • • • , «,-; «) is the number of partitions of («i, • • • , n¡)

into just « different parts, that is, the number of solutions of (1) in

which the vectors on the left hand side are all different.
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If 7 = 1, we have

(1 - Y)Gi(Y) = Gi(XiY)

and so

Qi(n) - Qi(n - 1) = XÏQi(n),

whence

Qi(n - 1) 1
QÁn)

Í-X1        (1 - Xi)(l - X*) • • • (1 - XT)

Similarly we find that

n(n-l)/2

Ri(n) =
(1 - Xi)(l - X*) • • • (1 - Xt)

Macmahon (Combinatory analysis ii, Cambridge, 1916) discussed

in detail the case j = 1 and referred briefly to the more general case,

commenting on its complexity. More recently Bellman (Bull. Amer.

Math. Soc. Research Problem 61-1-3) has asked for a formula for

Qî(n). My object here is to obtain formulae for Q¡(n) and R¡(n) for

general j and n. For j > 1, these formulae cannot be reduced to any-

thing as simple as in the case j — 1, but we can make some progress

in this direction and deduce certain results about partitions.

2. The formulae for Q¡;(n) and R¡(n). Let

(2) «i, a2, a3, ■ ■ •

be any infinite sequence such that \ak\ <1 for every k and SI"*I

< ». We write

00 00

C(Y) = II (1 + «*Y) = 1 + T,A(n)Y"
t=l n—1

and

D(Y) = {C(-F)}-1 = f[(í + akY + ¿Y* +■■■)
¡b=l

00

= 1 + Y,B(n)Y".

Clearly A (n) is the sum of the products of every set of n different a

and B(n) is the sum of the products of every set of 77 numbers a,
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repetitions permitted. We write also

S(m) = ]£ a",
k

We see at once that

» oo   ¿¡(m)

(3) log D(Y) = - £ log (1 - akY) = £ -^ F-.
t-l m-l      Í»

Hence

C "  S(m)      )
D(Y) = exp < 2 -1-i 1"7

and

(5(m)}^
5(n) = 2-11    ,   ,   »    »

the sum extending over all partitions of « of the form

« = Z *■»*»
and the product over all the different parts wz in the partition. Again

C(-F) = exp ^- X) — F-
I       m=l       *» )

and so

¿(n) = (-1)" 2- 11 -TT^-
(n) hmlmhn

Next, if we differentiate (3) with respect to Fand multiply through

by D(Y), we obtain

00 00 / 00 "\

23«5(m)F"-1 = 2 5(»)F—x <1 + Z S(n)r->

and so, equating coefficients of Yn~l, we have

n

(4) «£(«) = £ S(m)B(n - m).
m—l

Similarly

(5) «¿(») = ¿ (-1)—»Si»)^« - w).
m—l
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If we now take all of

Xi1 ■ ■ • X"/ (i^0,Ui¿ 7)

for the a in (2), we see that

Ain) = *,(»),       B(n)=Q¡(n)

and

5(m) = £ x7kl. ■ ■ xT = II (——) = —>
K J      ^ VAl-X?/     ßi(m)

where

ßiim) - Ù (1 - XT).
¿-i

Hence we have

(6) ok») = EII (a-o-M^íí«) }-*-
(n)

and

(7) Rjin) = (-1)" E II (-WM"1 {«&(»)}-*-.
(n)

These are the formulae for Qj(n) and R¡(n). For j = í, they were

found by Macmahon (loc. cit.).

Again, (4) and (5) become

"     Q,-(n — 777)
(8) nQM = £ ^——^

m_l        (3,(777)

and

" 2c,-(« — 777)
»*;(») = Z (-!)"     '

m=l 0,(777)

If E^m 7M =77, it is easy to show that

(1 - Z)(l - X2) • • • (1 - X")

11(1 - Xm)h<°

is a polynomial in X. Its degree is clearly

1 1
£ ß — £ /zm7» = —77(77 + 1) — 77 = ■— 77(77 — 1).

h=i 2 2

Hence, if we write
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P,(«) - PAXi, ■•■ , X,; n)

= ßi(l)ßi(2) • ■ ■ fi¿n)Qi(Xu •■■ , X,-, n)

we see from  (6)  that P3(«)  is a polynomial of degree at most

«(« —1)/2 in each of Xu ■ ■ ■ , X¡.

It follows from its definition that Qj(n) is a multiple infinite power

series in Xi, • ■ ■ , X¡, the coefficient of each term being a non-nega-

tive integer. Since the ß are polynomials with integral coefficients, we

see that all the coefficients in the polynomial P¡(n) are integers. It

seems very likely that all these coefficients are non-negative, but

this I have not been able to prove. In §1, we saw that

(10) Pi(n) = 1

for all «. Unfortunately nothing so simple is true for j>l.

3. Properties of Py(w). We now suppose that Q¡(n) and P,(«) are

defined by (6) and (7), so that Qj(n) and R¡(n) are rational functions

defined for all values of the Xi except the rath roots of unity for

which 1 ¿m ^«. Again, since Py(«) is a polynomial, it can be defined

for all values of the Xi without exception. We write Py(0)=Q/(0)

= Py(0) = 1 and see that P,(l) = 1.

We have now

ßi(Xi, ■■■ , X3_i, Xjl; m) - (1 - xD • • • (1 - X7_i)(l - xT)

= - xTßj(Xi, •■■ , !,_!, Xi-, m).

Hence, by (6) and (7),

Qííxu • • •, x,_i, x;1; ») = i;zn (-í)*"^..!)"1^«»)} ~hm
<»)

= (-lfx'R^Xi, • • • , Z,_i, X;; «)

and

Ri(Xh ■•■ , X,_i, X71; n) = (-ifx^ÁXi, ■■■ , X¡; n).

This transformation applies also with any one of Xu ■ • • , Xj_x in

place of Xj. Applying it twice, we have

(11) Qi(Xi, ■■■ , X,-_2, X7-1, X71; n) = xUxÏQÂXi, • • • , X,-; n).

Using (9), we see that

„ ,v            v     \      ^'         P}(Xi, • • • . Xj-i, Xj ; n)
/i,(.Ai, ■ • • , Xf, n) =-——-——-,

ßi(l) • • • ß,(n)
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so that, if we can evaluate P¡(n), we have a simple form for both

Qi(n) and Rj(n). Again

iXj-iXj) Pj(Xi, • • • , X,-i, Xj-i, Xj ; n)

= P,{XU ••■, xr, «).

If, then, we write

g=»(»-l)/2

and

PiiXu ■■■ , X,-; 77) =       ¿      \(h, • • • , k,)x\l . . -X-:
jblr.. .,kj=a

we have

\(ki, ■ ■ ■  ,  kj-2,  kj-l,  kj)  = \(kh • • •  ,  kj-2, g —  kj-i, g —  kj)

and similarly for any other pair of the ki. We can see at once by put-

ting Xi = X2= ■ ■ • = X, = 0, that X(0, 0, • ■ • , 0) = 1. Hence
x(g, g, 0, 0, • • -, 0) = 1 and soon. It follows that, for 7^2, P,(t7) is of

degree exactly g in every X<.

Next, we see that, in the sum on the right-hand side of (6), the

factor (1 —Xj)n occurs in the denominator only in the term in which

7W = 1, hi=n, i.e. the term corresponding to the partition of n into 77

units. But the factor (1 — X¡)n occurs in ßj(l)ßj(2) ■ ■ ■ ßj(n) and so

/3,-(l) • • • ßfin)
Pj(Xi, • • • , X,_i, 1 ; 77) =  lim

(12)

x^i    »!{/3,(l)}»

ßi-ijl) • • • ßj-i(n)

{pVi(l)}»

m—1.

= n n a + Xi+x\ +. •• + xt\

Hence

2J \(ki, • • •, kj)
h¡=a

is the coefficient of H^l Xj* in the double product on the right-

hand side of (12). Also, putting

Xi = X2 = • • • =X,_i = 1,

we have

P,(l, 1, • • • , 1; 77) =       ¿      \(ku • . • , kj) - («O*-1.
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Again

Pj(Xi, ■■■ , Xy_!, 0; n) = Pj-i(Xi, ■■■ , ïw; n)

and so

\(ki, • • • , ¿y_i, 0) = \(ki, ■ ■ • , kj-i).

By (10), X(¿i)=0 unless h = 0. Hence

X(Äi, 0, 0, • • • , 0) = 0,

unless ki = 0. Thus there is no term in Py which consists of a power of

one X only, i.e. apart from the term of zero degree, viz. 1, every term

contains at least two of the X. A number of other properties of the X

may be obtained similarly.

From (8) and (9), it follows that

_ , .       A  ßi(n -m+1) •■■ ßi(n)
(13) «Fy(«) = £ -——-P¡(n - »).

m=i ßj(m)

For ra^2, the factor 1 —Xi occurs at least once more in the numer-

ator of

ßi(n -m+1)--- ßj(n)

ßi(m)

than in the denominator. Hence

ßi(n)
nPi(n)=^-Pi(n-l)+ßi(l)T,

ßi(l)

where F is a polynomial in the Xt.

For a small value of ra, we can find the terms containing X? in

Py(«) as follows. It is easily verified that

G,(XÍF)GÍ-1(F) = G0)

and so

¿Qy(«)F« = i ZQADXy] \ ÍQi-i(s)Y '] ,
n-o Im j   \ t—o J

whence

(1 - x")Q,(n) = ZÄiöOf-iO* - 0.

that is
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(i4)     Py(»)»E*j{H (i-x7)l

0,_i(t7 - I + 1) • • • ßj-i(n)

ßi-til) ■ ■ ■ ßj-i(l)
PMPi-iin - I),

where, as usual, each empty product denotes unity. The terms in Xj*

occur in the first 777+ 1 terms on the right and can be expressed in

terms of P,(/) and Pj-iin—l) for lgl^m. Thus the term in X¡ is

x'fáíK'("-1)-Pw(")>-
4. Calculation of P,(2) and P/3). By (6) and (9),

Pj2) = m)m)i   1    +JLI
Pj(2) 2        \{0,(l)}>+0,(2)/

-ite+M,))

¿    V .=1 i=l /

= 1 + £ *1*2 + E XÍX2X3X4 + • • •.

Similarly, since 3 = 2 + 1 = 1 + 1 + 1, we have

(       1 1 1    )P,-(3) = 0,(1)0,(2)0,(3) <—-.-p- +-+->
16{/3,(1)}3      20,(1)0,(2)      30,(3) /

1   (0,(2)0,(3) 1

= -^ {n a + XiXi + Xi+x!)+3 n a - 3tî)

+ 2ll(l-^)(l-^)}.

Now

II (1 + 2X,- + 2X,2 + X'i) + 3 11(1 - x!) + 2 11(1 - X, - X) + X,)

= 3 II (1 + X]) + 3 II (1 - x!) + ¿ {2- + (-l)-2}

■ E*i• • ■ *.U + Xi) ■ ■ • (i + x„)(i + Xo+i) • • • (i + x-)

and so
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Fy(3) = 1 + E X\x\ + £ X\xlx\x\ +■■■

+ Xi---x,(i + Xi)---(i + x,) £ - {2^-1 + (-i)'-»}
6=0    3

Macmahon (loc. cit.) gives the above form of Py(2), but dismisses

Py(3) with the remark that it is very complex.

From the above, we have

F2(2) = 1 + XiX2,       P,(2) = 1 + XiZ2 + X2X3 + X3Xi

and

P2(3) = 1 + x\x\ + XiX2(l + Xi)(l + X2),

3      3 3      3 3      3

P3(3) = 1 + XiX2 + X2X3 + X3Xi

+ XiX2x3(i + Xi)(i + x2)(i + x») I£Xi - 2 + £ —-1.

The formulae (6) and (9) enable one to evaluate Py(«) for small j

and « and, in particular, to pick out the coefficient of any given term.

5. The case/= 2. By (12), we see that

m

P2(Xi, 1; n) = J! (1 + Xi + XÏ + • • • + XT) = Û (    ~     ')•
m=2 m-2 \ 1   —  X l /

We see then that

" /i - Ximx2m\

F2(Xi,X8;«)-n( ,       vv
m=2 \ 1   —   A lA 2 /

vanishes when X2 = l and similarly when Xi=l. It also vanishes in

virtue of (10), when Xx = 0 and when X2 = 0. It follows that

m     m

»  /l - XiX2\
P2(Xi,X2;«)= ni"-^r—)

m=2 \ 1  —  A iA 2 /

(15)
+ XiXi(l-Xi)(l-Xi)M(Xi,X2;n),

where M is a polynomial in Xi and X2. Since

XiX2V2(X71, XT; n) = P2(XU X2; n)
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and a similar relation is true for the first term on the right-hand side

of (15), we must have

Xl^X^MixT, X?; 77) = MiX 1, X2; 77)

and so M is of degree at most g — 3 in Xi and X2.

For a fixed 7, the recurrence formula (13) provides a slightly less

laborious means of finding P,(t7) than does (6). If we write Z=XiXs

and

f- = i+z+z2 + ■•• +zm,

the values of P2(4) and P2(5) found from (13) are

Pî(4) = fif2f3 - Zr302(l) - Zf202(2)

= (1 + Z2)U + ZU(Xi + X2) + Zf2(XÍ + X22)
and

Pi(5)   =   UtUU  - ¿U402(1)   - Zf2f402(2)

-Z(l+Z2)f302(3)-Z2f202(4)

= 1 + Z + 2Z2 + 3Z5 + 4Z4 + 6ZS + 4Z6

+ 3Z7 + 2Z8 + Z9 + Z10

+ ZU¿Xi + X2) + Zf 2f 4(X2x + X2)

+ Z(l + Z2)U(x\ + Xl) + Z2r2(XÍ + X2).

The detailed calculations have no point of interest.

6. Consequences in partition-theory. If

1
-   =   1   +  E Pn(t)X\
(l - x)(i - x2) • • • (l - x») ÍT

then pn(t) is the number of partitions of t into parts not greater than

77. It is well known (see, for example, Hardy and Wright, Theory of

numbers, 3d ed., Oxford, 1955, Theorem 343) that pn(t) is also the

number of partitions of ¿ into not more than n parts. From the defini-

tion of Qj(n) and P,(w), we see that

a >

9(771, • • • , 77,; 77) =       £      \(ki, ■ ■ ■ , kj) II pn(ni - ki).
»!,..., fcy—O ,=1

Hence, if we calculate Pj(n), we can express q(ni, • ■ • , n¡; n) in

terms of the pn. Again

a j

r(77i, • • • , 77,; 77) =       V      X(*i, £2, • • • , kj-i, g - kj)Ylpn(n{ - ki).
kit • • ■ ,kj~a »-.1
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7. An asymptotic expansion for large «. For fixed X¿ such that

|X¿| <1 (l^i^j) we can find an asymptotic expansion of Qj(n) for

large w. For simplicity, we confine ourselves to the case in which

j = 2, Xi and X2 are real and positive and the ratio of their logarithms

is not rational, so that X" =X2 is impossible for any positive integral

m and v. In the complex F-plane, G2(Y) has a simple pole at each of

the points

x^'x;'8 (h, ti^o).

If we write S = min (| Xi|-1, ¡X^"1),

d>(a, X) = f[ (1 - «X*)"1,
¡t=0

j = <p(Xi, Xi)<p(x2, x2) n n (i - xi'x22r\

and

K(h, t2; Xi, X2)

«i    (2 ii  -1   '2
-ft, „—«2= n n (i - x7"x7^3) n <kxikj, xo n *(xr, x2),

i1=l *j=.l ¡fc,=l *!=!

we find that

ftW-zEÈ^"4"-^"**'
~o *~o      1 - XÍiXj-*iF

is regular on and within the circle | F| = 5m+1. It follows that

e.(») = j£   Z K(h, h - h; Xi, X2)XniXÏh-kl) + O(on(m+1)),

4=0    ¡fci=0

where the 0(    ) symbol refers to the passage of « to infinity.
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