PARTITIONS OF MULTI-PARTITE NUMBERS

E. M. WRIGHT

1. Introduction. In what follows all small latin letters denote nonnegative rational integers. We suppose for the present that $\left|X_{i}\right|<1$ ($1 \leqq i \leqq j$) and write

$$
F_{i}(Y)=F_{j}\left(X_{1}, \cdots, X_{i} ; Y\right)=\prod\left(1+X_{1}^{k_{1}} \cdots X_{j}^{k_{j}} Y\right)
$$

and

$$
G_{j}(Y)=\left\{F_{j}(-Y)\right\}^{-1}=\Pi\left(1-X_{1}^{k_{1}} \cdots X_{j}^{k_{j}} Y\right)^{-1}
$$

where the products extend over all non-negative k_{1}, \cdots, k_{j}. If $|Y|<1$, we have

$$
G_{j}(Y)=1+\sum_{n=1}^{\infty} Q_{i}(n) Y^{n}
$$

where

$$
Q_{j}(n)=Q_{j}\left(X_{1}, \cdots, X_{j} ; n\right)=\sum_{n_{1}, \cdots, n_{j}=0}^{\infty} q\left(n_{1}, \cdots, n_{j} ; n\right) X_{1}^{n_{1}} \cdots X_{j}^{n_{j}}
$$

and $q\left(n_{1}, \cdots, n_{j} ; n\right)$ is the number of partitions of the j-partite number (n_{1}, \cdots, n_{j}) into just n parts, that is the number of solutions of the "vector" equation (or equation in single row matrices)

$$
\begin{equation*}
\sum_{k=1}^{n}\left(x_{1 k}, \cdots, x_{j k}\right)=\left(n_{1}, \cdots, n_{j}\right) . \tag{1}
\end{equation*}
$$

The order of the vectors on the left-hand side of (1) is irrelevant. Again

$$
F_{i}(Y)=1+\sum_{n=1}^{\infty} R_{j}(n) Y^{n}
$$

where

$$
R_{j}(n)=\sum r\left(n_{1}, \cdots, n_{j} ; n\right) X_{1}^{n_{1}} \cdots X_{j}^{n_{j}}
$$

and $r\left(n_{1}, \cdots, n_{j} ; n\right)$ is the number of partitions of $\left(n_{1}, \cdots, n_{j}\right)$ into just n different parts, that is, the number of solutions of (1) in which the vectors on the left hand side are all different.

Received by"the editors July 13, 1955.

If $j=1$, we have

$$
(1-Y) G_{1}(Y)=G_{1}\left(X_{1} Y\right)
$$

and so

$$
Q_{1}(n)-Q_{1}(n-1)=X_{1}^{n} Q_{1}(n)
$$

whence

$$
Q_{1}(n)=\frac{Q_{1}(n-1)}{1-X_{1}^{n}}=\frac{1}{\left(1-X_{1}\right)\left(1-X_{1}^{2}\right) \cdots\left(1-X_{1}^{n}\right)}
$$

Similarly we find that

$$
R_{1}(n)=\frac{X_{1}^{n(n-1) / 2}}{\left(1-X_{1}\right)\left(1-X_{1}^{2}\right) \cdots\left(1-X_{1}^{n}\right)}
$$

Macmahon (Combinatory analysis ii, Cambridge, 1916) discussed in detail the case $j=1$ and referred briefly to the more general case, commenting on its complexity. More recently Bellman (Bull. Amer. Math. Soc. Research Problem 61-1-3) has asked for a formula for $Q_{2}(n)$. My object here is to obtain formulae for $Q_{j}(n)$ and $R_{j}(n)$ for general j and n. For $j>1$, these formulae cannot be reduced to anything as simple as in the case $j=1$, but we can make some progress in this direction and deduce certain results about partitions.
2. The formulae for $Q_{j}(n)$ and $R_{j}(n)$. Let

$$
\begin{equation*}
\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots \tag{2}
\end{equation*}
$$

be any infinite sequence such that $\left|\alpha_{k}\right|<1$ for every k and $\sum\left|\alpha_{k}\right|$ $<\infty$. We write

$$
C(Y)=\prod_{k=1}^{\infty}\left(1+\alpha_{k} Y\right)=1+\sum_{n=1}^{\infty} A(n) Y^{n}
$$

and

$$
\begin{aligned}
D(Y)=\{C(-Y)\}^{-1} & =\prod_{k=1}^{\infty}\left(1+\alpha_{k} Y+\alpha_{k}^{2} Y^{2}+\cdots\right) \\
& =1+\sum_{n=1}^{\infty} B(n) Y^{n}
\end{aligned}
$$

Clearly $A(n)$ is the sum of the products of every set of n different α and $B(n)$ is the sum of the products of every set of n numbers α,
repetitions permitted. We write also

$$
S(m)=\sum_{k} \alpha_{k}^{m}
$$

We see at once that

$$
\begin{equation*}
\log D(Y)=-\sum_{k=1}^{\infty} \log \left(1-\alpha_{k} Y\right)=\sum_{m=1}^{\infty} \frac{S(m)}{m} Y^{m} \tag{3}
\end{equation*}
$$

Hence

$$
D(Y)=\exp \left\{\sum_{m=1}^{\infty} \frac{S(m)}{m} Y^{m}\right\}
$$

and

$$
B(n)=\sum_{(n)} \Pi \frac{\{S(m)\}^{h_{m}}}{h_{m}!m^{h_{m}}}
$$

the sum extending over all partitions of n of the form

$$
n=\sum h_{m} m
$$

and the product over all the different parts m in the partition. Again

$$
C(-Y)=\exp \left\{-\sum_{m=1}^{\infty} \frac{S(m)}{m} Y^{m}\right\}
$$

and so

$$
A(n)=(-1)^{n} \sum_{(n)} \Pi \frac{(-1)^{h_{m}}\{S(m)\}^{h_{m}}}{h_{m}!m^{h_{m}}}
$$

Next, if we differentiate (3) with respect to Y and multiply through by $D(Y)$, we obtain

$$
\sum_{n=1}^{\infty} n B(n) Y^{n-1}=\sum_{m=1}^{\infty} S(m) Y^{m-1}\left\{1+\sum_{n=1}^{\infty} B(n) Y^{n}\right\}
$$

and so, equating coefficients of Y^{n-1}, we have

$$
\begin{equation*}
n B(n)=\sum_{m=1}^{n} S(m) B(n-m) \tag{4}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
n A(n)=\sum_{m=1}^{n}(-1)^{m-1} S(m) A(n-m) \tag{5}
\end{equation*}
$$

If we now take all of

$$
X_{1}^{k_{1}} \cdots X_{j}^{k_{j}} \quad\left(k_{i} \geqq 0,1 \leqq i \leqq j\right)
$$

for the α in (2), we see that

$$
A(n)=R_{i}(n), \quad B(n)=Q_{i}(n)
$$

and

$$
S(m)=\sum X_{1}^{m k_{1}} \cdots X_{i}^{m k_{j}}=\prod_{i=1}^{i}\left(\frac{1}{1-X_{i}^{m}}\right)=\frac{1}{\beta_{i}(m)}
$$

where

$$
\beta_{j}(m)=\prod_{i=1}^{j}\left(1-X_{i}^{m}\right) .
$$

Hence we have

$$
\begin{equation*}
Q_{j}(n)=\sum_{(n)} \Pi\left(h_{m}!\right)^{-1}\left\{m \beta_{j}(m)\right\}^{-h_{m}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{i}(n)=(-1)^{n} \sum_{(n)} \Pi(-1)^{h_{m}\left(h_{m}!\right)^{-1}\left\{m \beta_{j}(m)\right\}^{-h_{m}} ~} \tag{7}
\end{equation*}
$$

These are the formulae for $Q_{j}(n)$ and $R_{j}(n)$. For $j=1$, they were found by Macmahon (loc. cit.).

Again, (4) and (5) become

$$
\begin{equation*}
n Q_{j}(n)=\sum_{m=1}^{n} \frac{Q_{j}(n-m)}{\beta_{i}(m)} \tag{8}
\end{equation*}
$$

and

$$
n R_{j}(n)=\sum_{m=1}^{n}(-1)^{n} \frac{R_{j}(n-m)}{\beta_{j}(m)}
$$

If $\sum h_{m} m=n$, it is easy to show that

$$
\frac{(1-X)\left(1-X^{2}\right) \cdots\left(1-X^{n}\right)}{\Pi\left(1-X^{m}\right)^{h_{m}}}
$$

is a polynomial in X. Its degree is clearly

$$
\sum_{h=1}^{n} k-\sum h_{m} m=\frac{1}{2} n(n+1)-n=\frac{1}{2} n(n-1)
$$

Hence, if we write

$$
\begin{align*}
P_{i}(n) & =P_{i}\left(X_{1}, \cdots, X_{i} ; n\right) \\
& =\beta_{j}(1) \beta_{i}(2) \cdots \beta_{j}(n) Q_{i}\left(X_{1}, \cdots, X_{i} ; n\right) \tag{9}
\end{align*}
$$

we see from (6) that $P_{j}(n)$ is a polynomial of degree at most $n(n-1) / 2$ in each of X_{1}, \cdots, X_{j}.

It follows from its definition that $Q_{j}(n)$ is a multiple infinite power series in X_{1}, \cdots, X_{j}, the coefficient of each term being a non-negative integer. Since the β are polynomials with integral coefficients, we see that all the coefficients in the polynomial $P_{j}(n)$ are integers. It seems very likely that all these coefficients are non-negative, but this I have not been able to prove. In §1, we saw that

$$
\begin{equation*}
P_{1}(n)=1 \tag{10}
\end{equation*}
$$

for all n. Unfortunately nothing so simple is true for $j>1$.
3. Properties of $P_{j}(n)$. We now suppose that $Q_{j}(n)$ and $R_{j}(n)$ are defined by (6) and (7), so that $Q_{j}(n)$ and $R_{j}(n)$ are rational functions defined for all values of the X_{i} except the m th roots of unity for which $1 \leqq m \leqq n$. Again, since $P_{j}(n)$ is a polynomial, it can be defined for all values of the X_{i} without exception. We write $P_{j}(0)=Q_{j}(0)$ $=R_{j}(0)=1$ and see that $P_{j}(1)=1$.

We have now

$$
\begin{aligned}
\beta_{i}\left(X_{1}, \cdots, X_{j-1}, X_{j}^{-1} ; m\right) & =\left(1-X_{1}^{m}\right) \cdots\left(1-X_{j-1}^{m}\right)\left(1-X_{i}^{-m}\right) \\
& =-X_{j}^{-m} \beta_{i}\left(X_{1}, \cdots, X_{i-1}, X_{i} ; m\right)
\end{aligned}
$$

Hence, by (6) and (7),

$$
\begin{aligned}
Q_{j}\left(X_{1}, \cdots, X_{j-1}, X_{i}^{-1} ; n\right) & =X_{i}^{n} \sum_{(n)} \Pi(-1)^{h_{m}}\left(h_{m}!\right)^{-1}\left\{m \beta_{j}(m)\right\}^{-h_{m}} \\
& =(-1)^{n} X_{i}^{n} R_{j}\left(X_{1}, \cdots, X_{j-1}, X_{j} ; n\right)
\end{aligned}
$$

and

$$
R_{j}\left(X_{1}, \cdots, X_{j-1}, X_{j}^{-1} ; n\right)=(-1)^{n} X_{j}^{n} Q_{j}\left(X_{1}, \cdots, X_{i} ; n\right)
$$

This transformation applies also with any one of X_{1}, \cdots, X_{j-1} in place of X_{j}. Applying it twice, we have

$$
\begin{equation*}
Q_{j}\left(X_{1}, \cdots, X_{j-2}, X_{i-1}^{-1}, X_{j}^{-1} ; n\right)=X_{j-1}^{n} X_{j}^{n} Q_{i}\left(X_{1}, \cdots, X_{i} ; n\right) . \tag{11}
\end{equation*}
$$

Using (9), we see that

$$
R_{i}\left(X_{1}, \cdots, X_{j} ; n\right)=\frac{X_{j}^{n(n-1) / 2} P_{j}\left(X_{1}, \cdots, X_{j-1}, X_{j}^{-1} ; n\right)}{\beta_{j}(1) \cdots \beta_{j}(n)}
$$

so that, if we can evaluate $P_{j}(n)$, we have a simple form for both $Q_{j}(n)$ and $R_{j}(n)$. Again

$$
\begin{aligned}
\left(X_{i-1} X_{j}\right)^{n(n-1) / 2} P_{j}\left(X_{1}, \cdots, X_{i-2}, X_{j-1}^{-1}, X_{j}^{-1}\right. & ; n) \\
& =P_{j}\left(X_{1}, \cdots, X_{j} ; n\right) .
\end{aligned}
$$

If, then, we write

$$
g=n(n-1) / 2
$$

and

$$
P_{j}\left(X_{1}, \cdots, X_{i} ; n\right)=\sum_{k_{1}, \cdots, k_{j}=0}^{g} \lambda\left(k_{1}, \cdots, k_{i}\right) X_{1}^{k_{1}} \cdots X_{j}^{k_{j}}
$$

we have

$$
\lambda\left(k_{1}, \cdots, k_{j-2}, k_{j-1}, k_{j}\right)=\lambda\left(k_{1}, \cdots, k_{j-2}, g-k_{j-1}, g-k_{j}\right)
$$

and similarly for any other pair of the k_{i}. We can see at once by putting $X_{1}=X_{2}=\cdots=X_{j}=0$, that $\lambda(0,0, \cdots, 0)=1$. Hence $\lambda(g, g, 0,0, \cdots, 0)=1$ and so on. It follows that, for $j \geqq 2, P_{j}(n)$ is of degree exactly g in every X_{i}.

Next, we see that, in the sum on the right-hand side of (6), the factor $\left(1-X_{j}\right)^{n}$ occurs in the denominator only in the term in which $m=1, h_{1}=n$, i.e. the term corresponding to the partition of n into n units. But the factor $\left(1-X_{j}\right)^{n}$ occurs in $\beta_{j}(1) \beta_{j}(2) \cdots \beta_{j}(n)$ and so

$$
\begin{align*}
P_{j}\left(X_{1}, \cdots, X_{j-1}, 1 ; n\right) & =\lim _{X_{i} \rightarrow 1} \frac{\beta_{j}(1) \cdots \beta_{j}(n)}{n!\left\{\beta_{j}(1)\right\}^{n}} \\
& =\frac{\beta_{j-1}(1) \cdots \beta_{j-1}(n)}{\left\{\beta_{j-1}(1)\right\}^{n}} \tag{12}\\
& =\prod_{i=1}^{i-1} \prod_{m=2}^{n}\left(1+X_{i}+X_{i}^{2}+\cdots+X_{i}^{m-1}\right)
\end{align*}
$$

Hence

$$
\sum_{k_{j}=0}^{g} \lambda\left(k_{1}, \cdots, k_{j}\right)
$$

is the coefficient of $\prod_{i=1}^{j-1} X_{i}^{\boldsymbol{k}_{i}}$ in the double product on the righthand side of (12). Also, putting

$$
X_{1}=X_{2}=\cdots=X_{i-1}=1
$$

we have

$$
P_{j}(1,1, \cdots, 1 ; n)=\sum_{k_{1}, \cdots, k_{j}=0}^{o} \lambda\left(k_{1}, \cdots, k_{j}\right)=(n!)^{j-1} .
$$

Again

$$
P_{i}\left(X_{1}, \cdots, X_{j-1}, 0 ; n\right)=P_{j-1}\left(X_{1}, \cdots, X_{i-1} ; n\right)
$$

and so

$$
\lambda\left(k_{1}, \cdots, k_{i-1}, 0\right)=\lambda\left(k_{1}, \cdots, k_{i-1}\right)
$$

By (10), $\lambda\left(k_{1}\right)=0$ unless $k_{1}=0$. Hence

$$
\lambda\left(k_{1}, 0,0, \cdots, 0\right)=0
$$

unless $k_{1}=0$. Thus there is no term in P_{j} which consists of a power of one X only, i.e. apart from the term of zero degree, viz. 1, every term contains at least two of the X. A number of other properties of the λ may be obtained similarly.

From (8) and (9), it follows that

$$
\begin{equation*}
n P_{j}(n)=\sum_{m=1}^{n} \frac{\beta_{j}(n-m+1) \cdots \beta_{j}(n)}{\beta_{j}(m)} P_{j}(n-m) \tag{13}
\end{equation*}
$$

For $m \geqq 2$, the factor $1-X_{i}$ occurs at least once more in the numerator of

$$
\frac{\beta_{j}(n-m+1) \cdots \beta_{j}(n)}{\beta_{j}(m)}
$$

than in the denominator. Hence

$$
n P_{i}(n)=\frac{\beta_{i}(n)}{\beta_{i}(1)} P_{i}(n-1)+\beta_{j}(1) T
$$

where T is a polynomial in the X_{i}.
For a small value of m, we can find the terms containing X_{j}^{m} in $P_{j}(n)$ as follows. It is easily verified that

$$
G_{j}\left(X_{j} Y\right) G_{j-1}(Y)=G_{j}(Y)
$$

and so

$$
\sum_{n=0}^{\infty} Q_{i}(n) Y^{n}=\left\{\sum_{l=0}^{\infty} Q_{j}(l) X_{i}^{l} Y^{l}\right\}\left\{\sum_{n=0}^{\infty} Q_{j-1}(s) Y^{\prime}\right\}
$$

whence

$$
\left(1-X_{i}^{n}\right) Q_{i}(n)=\sum_{l=0}^{n-1} X_{j}^{l} Q_{i}(l) Q_{j-1}(n-l)
$$

that is

$$
\begin{align*}
P_{j}(n)= & \sum_{l=0}^{n-1} x_{i}^{l}\left\{\prod_{m=l+1}^{n-1}\left(1-X_{i}^{m}\right)\right\} \tag{14}\\
& \cdot \frac{\beta_{j-1}(n-l+1) \cdots \beta_{j-1}(n)}{\beta_{j-1}(1) \cdots \beta_{j-1}(l)} P_{i}(l) P_{j-1}(n-l),
\end{align*}
$$

where, as usual, each empty product denotes unity. The terms in X_{j}^{m} occur in the first $m+1$ terms on the right and can be expressed in terms of $P_{j}(l)$ and $P_{j-1}(n-l)$ for $1 \leqq l \leqq m$. Thus the term in X_{j} is

$$
X_{i}\left\{\frac{\beta_{j-1}(n)}{\beta_{j-1}(1)} P_{j-1}(n-1)-P_{j-1}(n)\right\}
$$

4. Calculation of $P_{j}(2)$ and $P_{j}(3)$. By (6) and (9),

$$
\begin{aligned}
P_{j}(2) & =\frac{\beta_{j}(1) \beta_{j}(2)}{2}\left\{\frac{1}{\left\{\beta_{j}(1)\right\}^{2}}+\frac{1}{\beta_{j}(2)}\right\} \\
& =\frac{1}{2}\left(\frac{\beta_{j}(2)}{\beta_{j}(1)}+\beta_{j}(1)\right) \\
& =\frac{1}{2}\left\{\prod_{i=1}^{j}\left(1+X_{i}\right)+\prod_{i=1}^{j}\left(1-X_{i}\right)\right\} \\
& =1+\sum X_{1} X_{2}+\sum X_{1} X_{2} X_{3} X_{4}+\cdots
\end{aligned}
$$

Similarly, since $3=2+1=1+1+1$, we have

$$
\begin{aligned}
P_{j}(3) & =\beta_{j}(1) \beta_{j}(2) \beta_{j}(3)\left\{\frac{1}{6\left\{\beta_{j}(1)\right\}^{3}}+\frac{1}{2 \beta_{j}(1) \beta_{j}(2)}+\frac{1}{3 \beta_{j}(3)}\right\} \\
= & \frac{1}{6}\left\{\frac{\beta_{i}(2) \beta_{j}(3)}{\left\{\beta_{j}(1)\right\}^{2}}+3 \beta_{j}(3)+2 \beta_{j}(1) \beta_{j}(2)\right\} \\
= & \frac{1}{6}\left\{\Pi\left(1+X_{i}\right)\left(1+X_{i}+X_{i}^{2}\right)+3 \Pi\left(1-X_{i}^{3}\right)\right. \\
& \left.\quad+2 \Pi\left(1-X_{i}\right)\left(1-X_{i}^{2}\right)\right\}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \Pi\left(1+2 X_{i}+2 X_{i}^{2}+X_{i}^{3}\right)+3 \Pi\left(1-X_{i}^{3}\right)+2 \Pi\left(1-X_{i}-X_{i}^{2}+X_{i}^{3}\right) \\
& =3 \Pi\left(1+X_{i}^{3}\right)+3 \Pi\left(1-X_{i}^{3}\right)+\sum_{a=2}^{i}\left\{2^{a}+(-1)^{a} 2\right\} \\
& \quad \cdot \sum X_{1} \cdots X_{a}\left(1+X_{1}\right) \cdots\left(1+X_{a}\right)\left(1+X_{a+1}^{8}\right) \cdots\left(1+X_{i}^{3}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
P_{i}(3)= & 1+\sum X_{1}^{3} X_{2}^{3}+\sum X_{1}^{3} X_{2}^{3} X_{3}^{3} X_{4}^{3}+\cdots \\
+ & X_{1} \cdots X_{j}\left(1+X_{1}\right) \cdots\left(1+X_{j}\right) \sum_{b=0}^{j-2} \frac{1}{3}\left\{2^{j-b-1}+(-1)^{j-b}\right\} \\
& \cdot \sum\left(X_{1}-1+\frac{1}{X_{1}}\right) \cdots\left(X_{b}-1+\frac{1}{X_{b}}\right)
\end{aligned}
$$

Macmahon (loc. cit.) gives the above form of $P_{j}(2)$, but dismisses $P_{j}(3)$ with the remark that it is very complex.

From the above, we have

$$
P_{2}(2)=1+X_{1} X_{2}, \quad P_{3}(2)=1+X_{1} X_{2}+X_{2} X_{3}+X_{3} X_{1}
$$

and

$$
\begin{aligned}
P_{2}(3)= & 1+X_{1}^{3} X_{2}^{3}+X_{1} X_{2}\left(1+X_{1}\right)\left(1+X_{2}\right) \\
P_{3}(3)= & 1+X_{1}^{3} X_{2}^{3}+X_{2}^{3} X_{3}^{3}+X_{3}^{3} X_{1}^{3} \\
& +X_{1} X_{2} X_{3}\left(1+X_{1}\right)\left(1+X_{2}\right)\left(1+X_{3}\right)\left\{\sum X_{1}-2+\sum \frac{1}{X_{1}}\right\}
\end{aligned}
$$

The formulae (6) and (9) enable one to evaluate $P_{j}(n)$ for small j and n and, in particular, to pick out the coefficient of any given term.
5. The case $j=2$. By (12), we see that

$$
P_{2}\left(X_{1}, 1 ; n\right)=\prod_{m=2}^{n}\left(1+X_{1}+X_{1}^{2}+\cdots+X_{1}^{m-1}\right)=\prod_{m=2}^{n}\left(\frac{1-X_{1}^{m}}{1-X_{1}}\right) .
$$

We see then that

$$
P_{2}\left(X_{1}, X_{2} ; n\right)-\prod_{m=2}^{n}\left(\frac{1-X_{1}^{m} X_{2}^{m}}{1-X_{1} X_{2}}\right)
$$

vanishes when $X_{2}=1$ and similarly when $X_{1}=1$. It also vanishes in virtue of (10), when $X_{1}=0$ and when $X_{2}=0$. It follows that

$$
\begin{align*}
& P_{2}\left(X_{1}, X_{2} ; n\right)=\prod_{m=2}^{n}\left(\frac{1-X_{1}^{m} X_{2}^{m}}{1-X_{1} X_{2}}\right) \\
& \quad+X_{1} X_{2}\left(1-X_{1}\right)\left(1-X_{2}\right) M\left(X_{1}, X_{2} ; n\right) \tag{15}
\end{align*}
$$

where M is a polynomial in X_{1} and X_{2}. Since

$$
X_{1}^{\theta} X_{2}^{\theta} P_{2}\left(X_{1}^{-1}, X_{2}^{-1} ; n\right)=P_{2}\left(X_{1}, X_{2} ; n\right)
$$

and a similar relation is true for the first term on the right-hand side of (15), we must have

$$
X_{1}^{0-3} X_{2}^{0-3} M\left(X_{1}^{-1}, X_{2}^{-1} ; n\right)=M\left(X_{1}, X_{2} ; n\right)
$$

and so M is of degree at most $g-3$ in X_{1} and X_{2}.
For a fixed j, the recurrence formula (13) provides a slightly less laborious means of finding $P_{j}(n)$ than does (6). If we write $Z=X_{1} X_{2}$ and

$$
\zeta_{m}=1+Z+Z^{2}+\cdots+Z^{m}
$$

the values of $P_{2}(4)$ and $P_{2}(5)$ found from (13) are

$$
\begin{aligned}
P_{2}(4) & =\zeta_{1} \zeta_{2} \zeta_{3}-Z \zeta_{3} \beta_{2}(1)-Z \zeta_{2} \beta_{2}(2) \\
& =\left(1+Z^{2}\right) \zeta_{4}+Z \zeta_{3}\left(X_{1}+X_{2}\right)+Z \zeta_{2}\left(X_{1}^{2}+X_{2}^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
P_{2}(5)= & \zeta_{1} \zeta_{2} \zeta_{3} \zeta_{4}-Z \zeta_{3} \zeta_{4} \beta_{2}(1)-Z \zeta_{2} \zeta_{4} \beta_{2}(2) \\
& -Z\left(1+Z^{2}\right) \zeta_{3} \beta_{2}(3)-Z^{2} \zeta_{2} \beta_{2}(4) \\
= & 1+Z+2 Z^{2}+3 Z^{3}+4 Z^{4}+6 Z^{5}+4 Z^{6} \\
& +3 Z^{7}+2 Z^{8}+Z^{9}+Z^{10} \\
& +Z \zeta_{3} \zeta_{4}\left(X_{1}+X_{2}\right)+Z \zeta_{2} \zeta_{4}\left(X_{1}^{2}+X_{2}^{2}\right) \\
& +Z\left(1+Z^{2}\right) \zeta_{3}\left(X_{1}^{3}+X_{2}^{3}\right)+Z^{2} \zeta_{2}\left(X_{1}^{4}+X_{2}^{4}\right) .
\end{aligned}
$$

The detailed calculations have no point of interest.
6. Consequences in partition-theory. If

$$
\frac{1}{(1-X)\left(1-X^{2}\right) \cdots\left(1-X^{n}\right)}=1+\sum_{t=1}^{\infty} p_{n}(t) X^{t}
$$

then $p_{n}(t)$ is the number of partitions of t into parts not greater than n. It is well known (see, for example, Hardy and Wright, Theory of numbers, 3d ed., Oxford, 1955, Theorem 343) that $p_{n}(t)$ is also the number of partitions of t into not more than n parts. From the definition of $Q_{j}(n)$ and $P_{j}(n)$, we see that

$$
q\left(n_{1}, \cdots, n_{j} ; n\right)=\sum_{k_{1}, \cdots, k_{j}=0}^{o} \lambda\left(k_{1}, \cdots, k_{j}\right) \prod_{i=1}^{j} p_{n}\left(n_{i}-k_{i}\right) .
$$

Hence, if we calculate $P_{j}(n)$, we can express $q\left(n_{1}, \cdots, n_{j} ; n\right)$ in terms of the p_{n}. Again

$$
r\left(n_{1}, \cdots, n_{j} ; n\right)=\sum_{k_{1}, \cdots, k_{j}=0}^{g} \lambda\left(k_{1}, k_{2}, \cdots, k_{i-1}, g-k_{j}\right) \prod_{i=1}^{i} p_{n}\left(n_{i}-k_{i}\right)
$$

7. An asymptotic expansion for large n. For fixed X_{i} such that $\left|X_{i}\right|<1(1 \leqq i \leqq j)$ we can find an asymptotic expansion of $Q_{j}(n)$ for large n. For simplicity, we confine ourselves to the case in which $j=2, X_{1}$ and X_{2} are real and positive and the ratio of their logarithms is not rational, so that $X_{1}^{u}=X_{2}^{v}$ is impossible for any positive integral u and v. In the complex Y-plane, $G_{2}(Y)$ has a simple pole at each of the points

$$
X_{1}^{-t_{1}} X_{2}^{-t_{2}} \quad\left(t_{1}, t_{2} \geqq 0\right)
$$

If we write $\delta=\min \left(\left|X_{1}\right|^{-1},\left|X_{2}\right|^{-1}\right)$,

$$
\begin{aligned}
\phi(\alpha, X) & =\prod_{k=0}^{\infty}\left(1-\alpha X^{k}\right)^{-1} \\
J & =\phi\left(X_{1}, X_{1}\right) \phi\left(X_{2}, X_{2}\right) \prod_{k_{1}=1}^{\infty} \prod_{k_{2}=1}^{\infty}\left(1-X_{1}^{k_{1}} X_{2}^{k_{2}}\right)^{-1}
\end{aligned}
$$

and
$K\left(t_{1}, t_{2} ; X_{1}, X_{2}\right)$

$$
=\prod_{k_{1}=1}^{t_{1}} \prod_{k_{2}=1}^{t_{2}}\left(1-X_{1}^{-k_{1}} X_{2}^{-k_{2}}\right) \prod_{k_{2}=1}^{t_{2}} \phi\left(X_{2}^{-k_{2}}, X_{1}\right) \prod_{k_{1}=1}^{t_{1}} \phi\left(X_{1}^{-k_{1}}, X_{2}\right),
$$

we find that

$$
G_{2}(Y)-J \sum_{h=0}^{m+1} \sum_{k_{1}=0}^{h} \frac{K\left(k_{1}, h-k_{1} ; X_{1}, X_{2}\right)}{1-X_{1^{1}}^{k_{1}} X_{2}^{h-k_{1}} Y}
$$

is regular on and within the circle $|Y|=\delta^{m+1}$. It follows that

$$
Q_{2}(n)=J \sum_{h=0}^{m} \sum_{k_{1}=0}^{n} K\left(k_{1}, h-k_{1} ; X_{1}, X_{2}\right) X_{1}^{n k_{1}} X_{2}^{n\left(h-k_{1}\right)}+O\left(\delta^{n(m+1)}\right)
$$

where the $O(\quad)$ symbol refers to the passage of n to infinity.
University of Aberdeen, Scotland

