constructions in [3]. I am grateful to I. Kaplansky and O. F. G. Schilling for discussion and correspondence concerning Theorem 2.

REFERENCES

- 1. E. Artin, Algebraic numbers and algebraic functions, I, Mimeographed lecture notes, Princeton University, New York University, 1951.
- 2. I. Kaplansky, Maximal fields with valuations, Duke Math. J. vol. 9 (1942) pp. 303-321.
- 3. O. F. G. Schilling, Arithmetic in fields of formal power series in several variables, Ann. of Math. vol. 38 (1937) pp. 551-576.
- 4. ——, The theory of valuations, Math. Surveys, no. 4, American Mathematical Society, New York, 1950.
- 5. G. Whaples, Generalized local class field theory, I and II, Duke Math. J. vol. 19 (1952) pp. 505-517, and vol. 21 (1954) pp. 247-256.
- 6. ——, Existence of generalized local class fields, Proc. Nat. Acad. Sci. U.S.A. vol. 39 (1953) pp. 1100-1103.

Indiana University and Institute for Advanced Study

A NOTE ON COMPLETELY PRIMARY RINGS

S. J. BRYANT AND J. L. ZEMMER

A completely primary ring will mean a commutative ring with identity in which the ideal of nilpotent elements, called the radical, is a maximal ideal. For a completely primary ring A with radical N, \overline{A} will mean the quotient ring A/N. It has been shown by E. Snapper¹ that if A is a completely primary ring of characteristic zero then A contains a field F isomorphic with \overline{A} . The purpose of this note is to extend and, incidentally, give another proof of Snapper's result.

THEOREM. If A is a completely primary ring of characteristic zero and N its radical, then A contains a field F isomorphic with $\overline{A} = A/N$ such that each a in A can be uniquely written in the form a = f + n, where $f \in F$, $n \in N$.

PROOF. First note that $x \notin N$ implies that x has an inverse, x^{-1} . By Zorn's lemma A contains a maximal ring F whose intersection with N is 0. This ring F is a field, for otherwise the set F^* of all elements of the form ab^{-1} , $0 \neq b$, $a \in F$, is a field containing F, whose intersection with N is 0, a contradiction. To prove the theorem it is sufficient to show that A is identical with the subset A^* of A consisting of all

Received by the editors April 10, 1956.

¹ E. Snapper, Completely primary rings, III Imbedding and isomorphism theorems, Ann. of Math. vol. 53 (1951) pp. 207-234. See Remark 4.1, p. 218.

elements of the form f+n, $f \in F$, $n \in N$. Assume the contrary, then there is an $x \in A$ such that $x \notin A^*$. For $z \in A$ denote by \bar{z} the image in \overline{A} of z under the natural homomorphism of A onto \overline{A} , and by \overline{F} the set of all \overline{f} , $f \in F$. Note that \overline{F} is a subfield of \overline{A} isomorphic with F. Since $x \notin A^*$, $\bar{x} \neq \bar{0}$ and $\bar{x} \notin \overline{F}$. Suppose that \bar{x} is transcendental over \overline{F} . Then for any element $g = f_0 + f_1x + \cdots + f_nx^n$, in the subring F[x] of A generated by F and x, it is clear that $g \in N$ implies g = 0, or $N \cap F[x] = 0$. This, however, contradicts the maximality of F, since $F[x] \supset F$. Thus, \bar{x} must be algebraic over \overline{F} .

Now, let $\bar{f}(\lambda) = \bar{f}_0 + \bar{f}_1\lambda + \cdots + \bar{f}_m\lambda^m$ be a minimum polynomial for \bar{x} over \bar{F} . Denote by n(r) the element $f_0 + f_1(x+r) + \cdots + f_m(x+r)^m$ in the subring F_r of A generated by F and x+r, and note that for each $r \in N$, $n(r) \in N$. Further, if $h = h_0 + h_1(x+r) + \cdots + h_t(x+r)^t \in F_r$, with t < m, then $h \notin N$. It will be shown that for some $r \in N$, n(r) = 0. Assume the contrary and choose r_0 so that $n(r_0)$ has minimum exponent $\rho > 1$. Let $x_1 = x + r_0$ and $f^{(i)}(x_1) = a_0 + a_1x_1 + \cdots + a_{m-i}x_1^{m-i}$, where $a_j = (i+j)(i+j-1) \cdots (j+1)f_{i+j} \in F$. In particular, $f'(x_1) = f_1 + 2f_2x_1 + \cdots + mf_mx_1^{m-1} \notin N$, and hence has an inverse in A. Let $r_1 = -[f'(x_1)]^{-1}n(r_0)$, so that

$$n(r_0 + r_1) = f_0 + f_1(x + r_0 + r_1) + \cdots + f_m(x + r_0 + r_1)^m$$

$$= n(r_0) + f'(x_1)r_1 + \frac{1}{2!}f^{(2)}(x_1)r_1^2 + \cdots + \frac{1}{m!}f^{(m)}(x_1)r_1^m$$

$$= \left[\frac{1}{2!}f^{(2)}(x_1) + \cdots + \frac{1}{m!}f^{(m)}(x_1)r_1^{m-2}\right]r_1^2 = c[n(r_0)]^2,$$

has exponent less than ρ . This is a contradiction and hence $n(r_0) = 0$. Consider next the subring F_{r_0} of A. Recall that this is the subring generated by F and $x_1 = x + r_0$. Since $f(x_1) = n(r_0) = 0$ it is clear that the kernel of the homomorphism, $g(\lambda) \to g(x_1)$, of the polynomial domain $F[\lambda]$ onto F_{r_0} is the prime ideal $(f(\lambda))$. Thus F_{r_0} is a field and hence $N \cap F_{r_0} = 0$. Finally, $x \in A^*$ implies $x_1 = x + r_0 \in A^*$, so that F_{r_0} properly contains F, contrary to the maximality of F. This completes the proof of the theorem.

University of Missouri