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constructions in  [3]. I am grateful to I. Kaplansky and O. F. G.

Schilling for discussion and correspondence concerning Theorem 2.
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A NOTE ON COMPLETELY PRIMARY RINGS

S. J. BRYANT AND J. L. ZEMMER

A completely primary ring will mean a commutative ring with

identity in which the ideal of nilpotent elements, called the radical,

is a maximal ideal. For a completely primary ring A with radical N,

A will mean the quotient ring A/N. It has been shown by E. Snapper1

that if A is a completely primary ring of characteristic zero then A

contains a field F isomorphic with A. The purpose of this note is to

extend and, incidentally, give another proof of Snapper's result.

Theorem. If A is a completely primary ring of characteristic zero

and N its radical, then A contains a field F isomorphic with A =A/N

such that each a in A can be uniquely written in the form a =f+n, where

fCF, nCN.

Proof. First note that xCAT implies that x has an inverse, x~1. By

Zorn's lemma A contains a maximal ring F whose intersection with

N is 0. This ring F is a field, for otherwise the set F* of all elements

of the form ab'1, O^b, aCF, is a field containing F, whose intersec-

tion with N is 0, a contradiction. To prove the theorem it is sufficient

to show that A is identical with the subset A * of A consisting of all
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1 E. Snapper, Completely primary rings, III Imbedding and isomorphism theorems,

Ann. of Math. vol. 53 (1951) pp. 207-234. See Remark 4.1, p. 218.
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elements of the form f+n, fEF, nEN- Assume the contrary, then

there is an xEA such that xEA *. For zEA denote by z the image in

A of z under the natural homomorphism of A onto A, and by F the

set of all/, fEF. Note that F is a subfield of A isomorphic with F.

Since xE-A-*, X9^0 and xEF- Suppose that x is transcendental over

F. Then for any element g=fo+fix + • • • +fnxn, in the subring

F[x] of A generated by 7" and x, it is clear that gEN implies g = 0, or

NC\F[x\=0. This, however, contradicts the maximality of F, since

F[x]Z)F. Thus, * must be algebraic over F.

Now, let/(X) =/o+/iX+ • • • +/mXm be a minimum polynomial for

x over F. Denote by n(r) the elementfo+fi(x+r)+ • ■ ■ +fm(x+r)m

in the subring Fr of A generated by F and x+r, and note that for

each rEN, n(r)EN. Further, if h = ho+h(x+r)+ ■ ■ ■ +ht(x+r)'

EFr, with t<m, then hEN. It will be shown that for some rEN,

n(r) =0. Assume the contrary and choose r0 so that n(r0) has mini-

mum exponent p>l. Let Xi=x+ro and /(i)(xi) =a0+aiXi+ ■ ■ •

+am-iX™~\ where ai=(i+j)(i+j — l) ■ ■ ■ (j+1 )/,-+,GF. In particu-

lar, f'(xi) =/i + 2/2X1+ • • • +mfmx™~1EN, and hence has an inverse

in A. Let rx= — [f'(xi)]_Iw(r0), so that

n(r0 + rx) = f0 + fi(x + r0 + rx) + • • • + fm(x + r0 + rx)m

= n(n) +f'(xi)ri + ^-fm(xi)r\ +■■■ + —J^Mr?
2! ml

= [^-/Vi) + ■ ■ • + -T\xi)rr\\ = c[n(r0)]2,
L2! w! J

has exponent less than p. This is a contradiction and hence n(r0) =0.

Consider next the subring Fr, of A. Recall that this is the subring

generated by F and Xi = x+r0. Since f(xi) =n(r0) =0 it is clear that

the kernel of the homomorphism, g(X)—>g(xx), of the polynomial do-

main F[X] onto Fr„ is the prime ideal (/(X)). Thus 7V0 is a field and

hence Nr\Fro = 0. Finally, xE-A* implies xi = x+r0EA*, so that Fr„

properly contains F, contrary to the maximality of F. This completes

the proof of the theorem.
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