
CHARACTERISTIC IDEALS AND THE STRUCTURE
OF LIE ALGEBRAS

GEORGE B. SELIGMAN

The purpose of this note is to study the radical and such concepts

as semi-simplicity and simplicity for Lie algebras in terms of char-

acteristic ideals. The program follows the outlines of part of a funda-

mental paper of Fitting on finite groups, and the final result display-

ing an isomorphism of an algebra 8 with no solvable characteristic

ideals into the Lie algebra of derivations of a uniquely determined

completely reducible characteristic ideal in 8 is an exact analogue of

a result of his on semi-simple groups. In case the base field is of char-

acteristic zero, the theory collapses to the classical theory. An example

is given to show that this is not the case at prime characteristic.

1. Preliminaries. Let 8 be a finite-dimensional Lie algebra over a

field j5- A derivation D of 8 is a linear mapping of 8 into itself such

that [xy]D=[xD, y]+[x, yD] for all x, yG8. In particular, the

mapping ad z: x—>[xz] is a derivation of 8 for every zG8. An ideal 3

in 8 is called a characteristic ideal in 8 if 37? £3 for every derivation

D of 8.

Let 8(1,=8, 8(2)= [88] (i.e., the space of all finite sums £[*<y<],

Xi, y,G8), • • • , 8«+"= [8«8">], • • • . Then each 8(i) is a char-
acteristic ideal in 8, and 8 is called solvable if some 8(i) = (0). If 3 is a

solvable ideal in 8, and if the quotient algebra 8/3 is solvable, then

8 is solvable. For the solvability of 8/3 means that 8(i>C3 for some i.

Then 8(i+')C3f('+1)=0 for suitable v. Now if 9? and © are solvable
ideals in 8, so is 3J + © (set of all sums r+s, r£3c, j€E@). For by the

fundamental isomorphism theorem, Si + S/S^St/^f^© is solvable;

since © is also solvable, so is 9? + @. It is clear that 9? + © is an ideal

and is in fact a characteristic ideal if both 5R and © are characteristic

ideals. Consequently the sum of all solvable characteristic ideals in

a Lie algebra 8 is again a solvable characteristic ideal, and is in fact

the only maximal solvable characteristic ideal in 8. We shall call this

ideal the characteristic radical, or c-radical, of 8.

If 3 is a characteristic ideal in 8, let 21 be the annihilator of 3 in

8, i.e., the set of xE% such that [x3] = (0). Then §1 is clearly a sub-

space of 8; in fact, SI is a characteristic ideal in 8. For if D is a deriva-

tion of 8, then
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[W, 3] c [213]D + [21, 3D] c [213] = (0),

and this is sufficient to show that 21 is an ideal (take D = ad y, yC2).

2. Characteristic semi-simple algebras. A Lie algebra 8 will be

called characteristic semi-simple (ess.) if its e-radical is (0), or equiv-

alently, if its only solvable characteristic ideal is (0). By considering

the derived sequence 2F0 of a solvable ideal 21, we see from the last

nonzero entry that 8 is ess. if and only if the only abelian character-

istic ideal is (0). (A Lie algebra 8 is abelian if [88] = (0).)

Theorem l.Ifdt is the c-radical of 2, then 8/9c is ess.

Proof. Let © be a solvable characteristic ideal of 8/9?. Let <p de-

note the natural homomorphism of 8 onto 8/9i. Let ©* = ©(£_1. Then

©* is a solvable ideal of 8, since some entry in the sequence of (©*)(i>

is contained in 9c. Let D be a derivation of 8. Then D maps 9t into

itself, hence induces a derivation D of 8/9?, defined by

(udiJD = (uD)4>, uC2.

In particular, ©Z)C@, since © is a characteristic ideal in 8/9c. Now

let *£©*. Then s0G©, and (sD)d,= (s<p)D~C®, or sDC&*. Thus @*

is a characteristic ideal in 8 (to prove a subspace is a characteristic

ideal, it suffices to prove that it is mapped into itself by all deriva-

tions D; the ideal property followed by taking £> = ad x, x£8). Con-

sequently, since ©*33c> we have ©* = 9?, or © = (0). This completes

the proof.

Lemma 1. If 2 is ess., then every characteristic ideal in 2 is ess.

Proof. Let 8 be ess., 21 a characteristic ideal in 8. Let © be a

solvable characteristic ideal in 21. Let D be a derivation of 8. Since

2LDC:2I, the restriction of D to 21 is a derivation of 21, therefore maps

© into itself: <BDC.®. Hence © is a characteristic ideal in 8, therefore

is (0).
A Lie algebra 8 is called characteristic simple (c-simple) if its only

characteristic ideals are 8 and (0), and if [88] =8. We can say some-

thing about the ideals in such an algebra, although the concept is

somewhat looser than ordinary simplicity when the characteristic of

the base field g is not zero. Evidently a c-simple algebra is ess.

Theorem 2. Every proper ideal in a characteristic simple algebra 2

is nilpotent.

Proof. Let 21 be an ideal in 8, (0)^21f^8. First observe that if D

is any derivation of 8,
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[m]D c [%d, a] + [a, «d] c [as] c a.

More generally, if «*=[ • • • [[««]«] • • • a] (* factors), and if

a*2?CH*-i, then

I'+'o = [a*a]D c [a47j>, a] + [a*, ao]

c [a*-1, a] + [a*, 8] c a*.

Thus it follows by induction that an+17>C2In for all w.

Now the sequence an is a descending chain of ideals, so we must

have a*+1 = an for some n. Then a"D = an+17J>C2I» for all derivations

D of 8, or an is a characteristic ideal. Consequently an = (0), or a is

nilpotent.

3. Completely semi-simple algebras. A Lie algebra 8 will be called

completely semi-simple if 8 can be written as a direct sum of a set of

ideals in 8 which are characteristic simple algebras. Let 8 be com-

pletely semi-simple, and let

8 = 8i e • • • © 8,

be a direct decomposition of 8 as a sum of ideals which are c-simple

algebras. Let us prove that the 8, are characteristic ideals in 8. To

this end, we first show that 82+ • • • +8. is the annihilator of 81 in

8, and vice versa. Since [8,8,-] = (0) if i^j, it is enough to show that

the respective annihilators are contained in the corresponding ideals.

Let x = xi+x2+ ■ ■ ■ +x3, XiE%i, be in the annihilator of 81. We

prove Xi = 0. If Xij^O, then [xi8i]= [x8i] = (0). Let Si be the center

of 81, i.e., the annihilator of 81 in 81. Then £1 is a characteristic ideal

in 81. Since [8181] =81, 61 = (0). It follows that x1 = 0, or xG82+ • • •

+8,. If x = Xi+ • • • +x„ is in the annihilator of 82+ • • • +8«, let

Xj5£0,j>l. Then Xy is in the center of ©,- of 8,-, a contradiction. There-

fore x = XiG8i, and the assertion about the annihilators is proved.

Now let X1G81, and let D be a derivation of 8. Let y£82 + • • • +8,.

Then

[xiD, y] =  [xiy]D - [xh yD] = - [xu yD].

Thus [xiP, y]G(82+ • • • +8„)/r>8i = (0), or XiT> is in the annihilator

of 82+ • • • +8„ i.e., in 81. Therefore 81 is a characteristic ideal in 8,

and the same holds for each 8,-.

Let 8 be completely semi-simple, and let 3 be a characteristic ideal

in 8. If 8 =81© • • • ©8„ 8,- c-simple ideals, then [38t] is a character-

istic ideal in 8 for each i. Let D be a derivation of 8,. By defining

8/T> = (0),J9^i, we can extend D to a derivation of 8. Therefore [38<]

is a characteristic ideal in 8,-, and is either 8,- or (0). If [38t] = (0),
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then 3C8i+ • • • +8,'_i+8<+i+ • • • +8., the annihilator of 8,-. If
[38i]=8,-, then 8.C3. It follows that 3 is the (direct) sum of those

8< such that [38i]=8,-, and in particular that [33] =3. We can
therefore conclude:

Theorem 3. Every completely ss. Lie algebra is ess.

4. The maximal completely semi-simple characteristic ideal.

Theorem 4. Let 2 be ess. Then 2 contains a nonzero completely

semi-simple characteristic ideal.

Proof. We proceed by induction on the dimension of 8. If 8 has

the smallest possible dimension among all ess. algebras (namely, 3),

then 8 must be characteristic simple, since by Lemma 1 every char-

acteristic ideal in 8 in ess. In this case the theorem is trivial. Now

assume the theorem has been proved for ess. algebras of dimensions

less than k, and let 8 have dimension k. If 8 is c-simple, then 8 is

completely ss. If not, 8 contains a proper characteristic ideal 21,

which in turn is ess. Since 21 is of dimension less than k, 21 contains a

nonzero completely ss. characteristic ideal ©. But if D is a derivation

of 8, then 2I.DC21, so ©DC©, i.e., © is a characteristic ideal in 8.

This completes the proof.

Lemma 2. If 2 is ess., the sum of any two completely semi-simple char-

acteristic ideals in 2 is completely semi-simple.

Proof. Let 3 = 3i© • • • ©3r and $ = $1© • ■ • ©S, be com-

pletely semi-simple characteristic ideals in 8; the 3» are c-simple

ideals in 3» the Si c-simple ideals in S. Then

3 + S = 3l + • • • + 3r + Si + • • • + S..

All 3> and Si are characteristic ideals in 8, since they are char-

acteristic ideals in 3 and S, respectively. Now consider

[3i + • • • + 3r + Si + • • • + S.-l, S.] = 21.

This is a characteristic ideal in 8 contained in S„ and is an ideal in

S,. Since S, is c-simple, we have by Theorem 2, that either 21= S„

21 =(0), or 21 is nilpotent. But in the last of these cases, 21 is a nil-

potent (hence solvable) characteristic ideal in 8, therefore must be

(0). Since 2IC3i+ • ■ • + S,_i, we have

S, Q 3i + • • • + S8-i in case 21 = S«, and otherwise

(3i + • • • + S—1) (~\ S„ is in the center of S„, hence is (0).

In this case, 3 + S = (3i + ■ • ■ + S,_i)ffiS8. We can now repeat the
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argument using 3i+ • • • +S,_i to prove that 3 + S is a direct sum

of certain of the 3< and certain of the Sy. This completes the proof

of the lemma.

It follows from Lemma 2 and Theorem 4 that every ess. algebra 8

contains a unique nonzero maximal completely ss. characteristic ideal

©. Let 21 be the annihilator of © in 8; 21 is a characteristic ideal in 8.

Therefore 2Ii^\© is an abelian characteristic ideal in 8, hence is (0),

and 2l + © = 2Iffi©. If 21?= (0), 21 contains a nonzero completely ss.

characteristic ideal ©i, which is also a characteristic ideal in 8. There-

fore @i+© = ©iffi© is a completely ss. ideal in 8 containing ©

properly. This is a contradiction. If we denote by ad@(x) the restric-

tion to the invariant subspace © of the mapping ad (x), x£8, we have

the following theorem.

Theorem 5. The annihilator of © in 2 is (0). Therefore the mapping

x—>ad© (x) is an isomorphism of 2 into the derivation algebra 2) of ©.

It will be observed that the image of 8 under this isomorphism

contains in particular all inner derivations of @, and that if every

derivation of © should be inner, we would have 8 = ©. Moreover,

ad© (8) is an ideal in 2D if and only if every derivation of © can be

extended to a derivation of 8. For if this condition is satisfied, let D

be a derivation of ©, and let x£8. We denote also by D some exten-

sion of D to a derivation of 8. If s£©,

s[ad©(x), D] = [s, x]D — [sD, x] = [s, xD],

or

[ad© (x), D] = ad©(xD) <£ ad© (8).

Conversely if ad©(8) is an ideal in SD, let Z?G2D. Then for every

x£8, there exists y£8 such that [ad© (x), Z>]=ad© (y). (In fact, y is

unique by Theorem 5.) Define xD=y. Then D is evidently a linear

mapping of 8 into 8, and if Xi, x2£8,

ad© ([xiX2]D) = [ad© ([xix2]), D] = [[ad© (a,), ad©(x2)]Z)]

= — [[ad©(x2), D] ad© (xi)] — [[D, ad© (xi)] ad© (xs)]

= — [ad© (x2D), ad© (xi)] + [ad© (xj)), ad© (x2)]

= ad© ([xiD, x2] + [xi, XiD]),

so that D is a derivation of 8 coinciding with the given derivation

on ©.

5. An example. The following example, suggested to me by Pro-

fessor Jacobson, will illustrate some points where the theory exposed
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here diverges from the standard notions of radical and simplicity. Let

% be a field of characteristic p > 2 and let 3JJ be the three-dimensional

simple Lie algebra of two by two matrices of trace zero over %. Let

@ be a cyclic group of order p with generator g, and let a be the group

ring of ® over g. Let the space 8 be defined as the tensor product

90?<g>a. We can make 8 into a Lie algebra by defining [mi®ai,

m2®a2] = [mim2]<g)aia2. Among the derivations of 8 we have, in

addition to the inner derivations, all mappings of the form m®a-+m

®a', where a—>a' is a derivation of a, as an associative algebra. Now

the associative radical 9t of a is spanned by g — l,g2—l, • • • , gp_1 — 1,

and 9Ji ® 9t is a nonzero solvable ideal in 8, in fact a nilpotent ideal.

However the mapping g—+1 defines a derivation of a, which induces

a derivation D of 8 as above. If S3 is a characteristic ideal in 8,93 5^ (0),

then one operates successively with D and with the derivations

ad (m®l), mEWl, to show 93 contains the elements mi®l, m2®l,

m3<g)l, where mi, m2, m3 are a basis for 9JJ. Then operation with the

derivations ad (mi®g>) shows that 93 = 8. Therefore 8 is c-simple, but

not simple, and its radical is not a characteristic ideal.
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