CHARACTERISTIC IDEALS AND THE STRUCTURE
OF LIE ALGEBRAS

GEORGE B. SELIGMAN

The purpose of this note is to study the radical and such concepts
as semi-simplicity and simplicity for Lie algebras in terms of char-
acteristic ideals. The program follows the outlines of part of a funda-
mental paper of Fitting on finite groups, and the final result display-
ing an isomorphism of an algebra ® with no solvable characteristic
ideals into the Lie algebra of derivations of a uniquely determined
completely reducible characteristic ideal in ® is an exact analogue of
a result of his on semi-simple groups. In case the base field is of char-
acteristic zero, the theory collapses to the classical theory. An example
is given to show that this is not the case at prime characteristic.

1. Preliminaries. Let & be a finite-dimensional Lie algebra over a
field §. A derivation D of ® is a linear mapping of ® into itself such
that [xy]D=[xD, y]+[x, yD] for all x, yER. In particular, the
mapping ad z: x— [xz] is a derivation of € for every 2E&Q. An ideal &
in & is called a characteristic ideal in  if DS for every derivation
D of &

Let @ =8, = [22] (i.e., the space of all finite sums D [x:],
xi, ¥iEQ), + - -, YWD =[QWE®] ... Then each R is a char-
acteristic ideal in &, and 8 is called solvable if some 8 = (0). If S isa
solvable ideal in &, and if the quotient algebra /% is solvable, then
L is solvable. For the solvability of /3 means that »C & for some 4.
Then QUM C FC+D =0 for suitable ». Now if i and & are solvable
ideals in &, so is R+ & (set of all sums 7+s, rER, s€S). For by the
fundamental isomorphism theorem, R+S/S=R/RNS is solvable;
since & is also solvable, so is R +S. It is clear that R+ S is an ideal
and is in fact a characteristic ideal if both % and © are characteristic
ideals. Consequently the sum of all solvable characteristic ideals in
a Lie algebra { is again a solvable characteristic ideal, and is in fact
the only maximal solvable characteristic ideal in 2. We shall call this
ideal the characteristic radical, or c-radical, of Q.

If 3 is a characteristic ideal in &, let ¥ be the annihilator of & in
g, i.e., the set of x&Q such that [x&]=(0). Then ¥ is clearly a sub-
space of £; in fact, ¥ is a characteristic ideal in & For if D is a deriva-
tion of €, then
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[aD, 3] < [ASID + [, 3D] € [A] = (0),
and this is sufficient to show that ¥ is an ideal (take D=ad y, y&R).

2. Characteristic semi-simple algebras. A Lie algebra  will be
called characteristic semi-simple (css.) if its c-radical is (0), or equiv-
alently, if its only solvable characteristic ideal is (0). By considering
the derived sequence A of a solvable ideal ¥, we see from the last
nonzero entry that  is css. if and only if the only abelian character-
istic ideal is (0). (A Lie algebra € is abelian if [22]=(0).)

THEOREM 1. If R is the c-radical of &, then /R is css.

ProoF. Let & be a solvable characteristic ideal of /9. Let ¢ de-
note the natural homomorphism of € onto {/R. Let ©*=&S¢~1. Then
&* is a solvable ideal of &, since some entry in the sequence of (&%*)®
is contained in R. Let D be a derivation of & Then D maps R into
itself, hence induces a derivation D of /%R, defined by

(u¢)D = (uD)¢, uE L

In particular, @DC, since & is a characteristic ideal in ¢/®. Now
let s&€&*. Then s¢ €S, and (sD)¢ = (s¢p)DES, or sDES*. Thus &*
is a characteristic ideal in  (to prove a subspace is a characteristic
ideal, it suffices to prove that it is mapped into itself by all deriva-
tions D; the ideal property followed by taking D=ad x, x&®). Con-
sequently, since ©*DR, we have &* =R, or &= (0). This completes
the proof.

LemMA 1. If Q is css., then every characteristic ideal in & is css.

ProOF. Let ® be css., A a characteristic ideal in & Let & be a
solvable characteristic ideal in 2. Let D be a derivation of &. Since
ADCY, the restriction of D to U is a derivation of U, therefore maps
& into itself: SDCS. Hence & is a characteristic ideal in &, therefore
is (0).

A Lie algebra { is called characteristic simple (c-simple) if its only
characteristic ideals are € and (0), and if [f2] =8 We can say some-
thing about the ideals in such an algebra, although the concept is
somewhat looser than ordinary simplicity when the characteristic of
the base field § is not zero. Evidently a ¢-simple algebra is css.

THEOREM 2. Every proper ideal in a characteristic simple algebra 2
is nilpotent.

ProoF. Let ¥ be an ideal in 8, (0) #A=Q. First observe that if D
is any derivation of g,
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[fA]D C [AD, Al + [, AD] C [AR] C A

More generally, if %¢=[ .- [[AA]A] - - - A] (k factors), and if
A*DC Y+, then

A+1D = [AXA]|D C [A*D, A] + [A*, AD]
C [, A + [uF 2] S A-

Thus it follows by induction that Y*+*'DCA" for all 7.

Now the sequence %" is a descending chain of ideals, so we must
have A*+1 =" for some #n. Then A"D =Y+1DCY" for all derivations
D of &, or A" is a characteristic ideal. Consequently %»=(0), or ¥ is
nilpotent.

3. Completely semi-simple algebras. A Lie algebra 2 will be called
completely semi-simple if & can be written as a direct sum of a set of
ideals in  which are characteristic simple algebras. Let € be com-
pletely semi-simple, and let

L= - -0

be a direct decomposition of  as a sum of ideals which are ¢-simple
algebras. Let us prove that the ¥; are characteristic ideals in & To
this end, we first show that %+ - - - 4+&, is the annihilator of & in
g, and vice versa. Since [2,2;]=(0) if 7, it is enough to show that
the respective annihilators are contained in the corresponding ideals.

Let x=x14x4+ - - - +x,, x;&%,;, be in the annihilator of &. We
prove x;=0. If x;50, then [x;2]= [x2]=(0). Let G, be the center
of &, i.e., the annihilator of & in &. Then €, is a characteristic ideal
in &. Since [%]=%, €= (0). It follows that x,=0, or xE+ - - -
+8,. If x=x:4+ -+ - +x, is in the annihilator of L+ - - - +&,, let
x;7%0,7>1. Then x; is in the center of §; of &;, a contradiction. There-
fore x =x,&%;, and the assertion about the annihilators is proved.

Now let x; &%, and let D be a derivation of . Let yER+ - - - +&,.
Then

[#:D, y] = [z1y]D — [2, yD] = — [z, yD].
Thus [x:D, y]E(%+ - - - +)N = (0), or x;D is in the annihilator
of {4 - - - +8,, i.e., in &. Therefore & is a characteristic ideal in &,

and the same holds for each ..

Let £ be completely semi-simple, and let & be a characteristic ideal
inIfL=2® - - - &L, & c-simple ideals, then [3L;]is a character-
istic ideal in & for each 7. Let D be a derivation of ®;. By defining
2;D =(0), j 1%, we can extend D to a derivation of ®. Therefore [32;]
is a characteristic ideal in ®;, and is either £ or (0). If [3%:]=(0),
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then 3CYH+ « - - +&€1+%iu+ - - - 48, the annihilator of ;. If
[32:]=2,, then ,CS. It follows that & is the (direct) sum of those
2; such that [3%]=%;, and in particular that [3&]=%. We can
therefore conclude:

THEOREM 3. Every completely ss. Lie algebra is css.
4. The maximal completely semi-simple characteristic ideal.

THEOREM 4. Let & be css. Then R contains a nonzero completely
semi-simple characteristic ideal.

Proor. We proceed by induction on the dimension of & If { has
the smallest possible dimension among all css. algebras (namely, 3),
then ® must be characteristic simple, since by Lemma 1 every char-
acteristic ideal in & in css. In this case the theorem is trivial. Now
assume the theorem has been proved for css. algebras of dimensions
less than k&, and let & have dimension k. If 8 is ¢-simple, then  is
completely ss. If not, & contains a proper characteristic ideal ¥,
which in turn is css. Since ¥ is of dimension less than &, % contains a
nonzero completely ss. characteristic ideal &. But if D is a derivation
of ®, then ADCY, so SBDCS, i.e., S is a characteristic ideal in L.
This completes the proof.

LeEmMA 2. If Qs css., the sum of any two completely semi-simple char-
acteristic ideals in & is completely semi-simple.

ProoF. Let 3=3,® - - - ®F, and K= - - - ® R, be com-
pletely semi-simple characteristic ideals in &; the J; are c-simple
ideals in &, the &; c-simple ideals in ®. Then

S(+@=31+“'+8<r+ﬁl+°"+ﬁa-

All &; and R; are characteristic ideals in &, since they are char-
acteristic ideals in & and f, respectively. Now consider

St 3+ R+ -+ Ry, Re] =

This is a characteristic ideal in  contained in &,, and is an ideal in
f,. Since R, is c-simple, we have by Theorem 2, that either A= &,,
A =(0), or ¥ is nilpotent. But in the last of these cases, ¥ is a nil-
potent (hence solvable) characteristic ideal in £, therefore must be
(0). Since A+ -+ - - + R, we have

RS+ -+ + K1in case Y = K,, and otherwise

Q14+ -+ 4+ K.4) N K, is in the center of K, hence is (0).
In this case, 3+ 8=(S+ - - - + Re-1)®D &:. We can now repeat the
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argument using &1+ - - -+ + &,-1 to prove that 3+ & is a direct sum
of certain of the J; and certain of the &;. This completes the proof
of the lemma.

It follows from Lemma 2 and Theorem 4 that every css. algebra ¢
contains a unique nonzero maximal completely ss. characteristic ideal
&. Let U be the annihilator of © in €; % is a characteristic ideal in L.
Therefore ANS is an abelian characteristic ideal in &, hence is (0),
and A+S=ADS. If A=#(0), A contains a nonzero completely ss.
characteristic ideal &, which is also a characteristic ideal in . There-
fore ©,+©6=6,9S is a completely ss. ideal in ® containing &
properly. This is a contradiction. If we denote by ade(x) the restric-
tion to the invariant subspace & of the mapping ad (x), x €8, we have
the following theorem.

THEOREM 5. The annihilator of © in & is (0). Therefore the mapping
x—ade (x) is an isomorphism of { into the derivation algebra D of .

It will be observed that the image of & under this isomorphism
contains in particular all inner derivations of &, and that if every
derivation of & should be inner, we would have 2=&. Moreover,
ade (2) is an ideal in D if and only if every derivation of & can be
extended to a derivation of {. For if this condition is satisfied, let D
be a derivation of &, and let x &2 We denote also by D some exten-
sion of D to a derivation of & If s&€8,

s[ade(x), D] = [s, x]D — [sD, x] = [s, «D],
or
[ad@ (x), D] = ade(xD) € ads (R).

Conversely if ade(R) is an ideal in ©, let DED. Then for every
xEQ, there exists yEQsuch that [ade (x), D]=ade (v). (In fact, y is
unique by Theorem 5.) Define xD=y. Then D is evidently a linear
mapping of  into , and if x;, x. €,

ade ([#12:]D) = [ade ([#1%:]), D] = [[ade (21), ade(2) ID]

— [[ade(x2), D] ade (#1)] — [[D, ade (21)] ade (x2) ]
= — [ade (%:D), ade (21)] + [ade (x,D), ade (x2)]
ads ([xlD, xz] + [xly xzD]),

so that D is a derivation of { coinciding with the given derivation
on &.

S. An example. The following example, suggested to me by Pro-
fessor Jacobson, will illustrate some points where the theory exposed
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here diverges from the standard notions of radical and simplicity. Let
% be a field of characteristic > 2 and let It be the three-dimensional
simple Lie algebra of two by two matrices of trace zero over §. Let
® be a cyclic group of order p with generator g, and let ¥ be the group
ring of ®@ over {. Let the space & be defined as the tensor product
MA. We can make  into a Lie algebra by defining [m:®ay,
me®as| = [mimy]®a1a;. Among the derivations of € we have, in
addition to the inner derivations, all mappings of the form m ®a—m
®a’, where a—a’ is a derivation of ¥, as an associative algebra. Now
the associative radical i of A is spanned by g—1, g2—1, - - -, gp71—1,
and M N is a nonzero solvable ideal in &, in fact a nilpotent ideal.
However the mapping g—1 defines a derivation of U, which induces
a derivation D of € as above. If B is a characteristic ideal in &, B #(0),
then one operates successively with D and with the derivations
ad (m®1), mEM, to show B contains the elements m; ®1, m®1,
ms;®1, where m,, m,, ms are a basis for . Then operation with the
derivations ad (m;®g?) shows that B=2. Therefore { is ¢-simple, but
not simple, and its radical is not a characteristic ideal.
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