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1. We denote by 5 the family of functions

(1) f(z) =— +aiz+a2z2+ ■■■ , 1*1   <1.
z

which are univalent in the unit circle, and we set ^4n = sup \an\,

f(z)CS. It has been known a long time that -4j = 1, and it was shown

in 1938 by Schiffer [6] and Goluzin [2] that A2 = 2/3. This gave rise

to the conjecture .4n = 2(w + l)~1 [7] which, because of the simple

mapping properties of the "extremal"

(2) /„(*) = i-»(l + 2"+1)2'(»+» = — +-z +
z      n + 1

looked very convincing at the time.

It has, however, recently been shown that this conjecture is false,

at least for odd n [l; 3]. Garabedian and Schiffer [l] succeeded,

moreover, in proving that the exact value of A3 is 1/2 +e~e. While

this disposes of the conjecture (w + l)^4„ = 2 in the case of the general

class S, one may nevertheless attempt to save the inequality

(n + l)|a„| ^2 by imposing suitable restrictions on the class .S. Tak-

ing our cue from a somewhat similar situation which arose in the early

discussion of the Bieberbach conjecture, we are led to the considera-

tion of two particular sub-classes of S: (a) the class of functions/(s)

with real coefficients a„; (b) the class St of functions/(z) which map

| z\ < 1 onto the complement of a point-set starlike with respect to the

origin. The case (a), however, is ruled out immediately, since the

Garabedian-Schiffer extremal function happens to have real coeffi-

cients. We are thus left with the case (b).

It may be remarked that the choice of the origin as the "star

center" of the map appears natural in view of the fact that, because

of (1),

— I     f(eie)dd = lim — I     f(Pe")dd = 0,
2% J o P-»l   27T J o
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i.e., the center of gravity of the boundary of the map is at the origin.

In what follows we shall describe a method which, for a given n,

may be used to prove that (ra + l)|<z„| ^2 iorf(z)ESt. The computa-

tions which are involved become, however, more and more laborious

as n grows larger, and very soon a point is reached beyond which

the importance of the result does not seem to be commensurate with

the labor required to obtain it. We shall here treat the cases « = 3, 4,

5, 6, and thus prove

Theorem I. Let St denote the class of functions (1) which are univa-

lent in \z\ < 1 and map \ z\ < 1 onto the complement of a point-set star-

like with respect to the origin. Then

(3) i*.i ̂ -4rM + 1

for n = 3, 4, 5, 6. This inequality is sharp, as shown by the functions (2)

(which belong to St).

We shall supplement Theorem I by the following result which is

valid for all n (n = 1, 2, ■ • • ) and which yields information about

the functions solving the problem |a„| =Max. within the class St.

Theorem II. A function f(z) which solves the extremal problem

(4) | an |   = Max.,       f(z) ESt, n = 1, 2, • • •

is necessarily of the form

n+l

(5) /oo = z-1 n (i - «*)»■

where |k,| =1, A,=iO, and Xi+ • • • +XB+i = 2.

Theorem II reduces the problem (4) to an elementary problem in

the ordinary calculus. This might be expected to make the proof of

(3) easy but—unless the present authors have overlooked something

obvious—the proof of (3) via Theorem II seems to be difficult even

for n = 3.

2. We now turn to the proof of Theorem I. It is well known that

the class St is closely related to the class P of functions g(z) = 1+hz

-\-b2z2-\- • • ■ which are regular, and have a positive real part in

|z| <1. Uf(z)ESt, we have

*/'(*) , -
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where g(z) is a suitable function of P. (1) shows that we have, more-

over, bi = 0. Writing

(6) g(z) = 1 + G(z) = 1 + hz2 + b3z* + ■■■

and integrating (6), we obtain

/n       1 { C'G(z)     If(z) = — exp <   I    -dz>
z Wo      2 '

(7)
1(11 |

= — exp < — ■— b2z2-b3z3 —•••>.
z \     2 3 j

Because of (1), this gives rise to the following identities:

(8a) — 2oi = b2, —3a2 = b3,

1 2 5
(8b) —4aj — bi-bt,      — 5<z4 = b6-M>3,

2 6

3 1    2       1    3
(8c)                — 6a6 = be-b2bt-b3 -\-b2,

4 3 8

7 7 7   2
(8d) — 7a6 = b-i-b2bb-J364 H-W3.

10 12 24

The inequalities |fli| ^1, |a2| ^2/3 are trivial consequences of

(8a) and the classical inequality \bn\ ^2, n = 2, 3, ■ ■ ■ . In order tc

obtain the corresponding inequalities for the higher coefficients an,

we have to show that the absolute values of the right-hand sides of

(8b), (8c), (8d) are bounded by 2. This will be accomplished by means

of the following two lemmas.

Lemma I. // the functions

00 oo

1 + 2~2 o,z", 1 + £ c,z'
1—1 F=l

belong to P, then the same is true of the function

1 "
1 + —- 2~1 bpCyZ'.

2 p_i

Lemma II. Let h(z) = l+/?1z+/32z2+ • • •   and l+Gi(z) = l+b{z

+b2'z2+ ■ ■ ■  be functions of P, and set

m       *-■?['+fs(D*l-
If An is defined by
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(10) Z(-l)'+1Y,-iG'(Z)=Z^z»,
>■—1 n—I

then

(11) U„|   £2.

Proof of Lemma I. We write g(z) = l+biz+b2z2+ • • • , gi(z)

= 1 +ciz+c2z2+ • • • and we note that the function g2(z) = [gi(z*) ]*

= l+ci*z+c2*z2-f- • • ■ likewise belongs to P (asterisks denote com-

plex conjugates). If 0<p<l and \k\ =1, we thus have

0 ^ Re j— f rg(PKe^) Re [g2(Peie) ]dd\

= Re i^f2\(PKe«)[g2(pe<°) + g2*(Pe<°))dd}

= Re U + — E5a(p!«)'[.

Since p2K may represent any point in the unit circle, this proves

Lemma I.

Proof of Lemma II. Since the mapping w—*(l+iaw)(w+ia)~1

(a real) transforms the right half-plane into itself, the function

1 + ia[l + Gi(z)]
h(z) =-

ia + 1 + Gi(z)

(1 - ia\   " G\(z)
(12) =l-(-IZC-l)^1-—-

\1 + ia) ti (1 + ice)-1

(1 - ia\  "
= l-lT——)2ZBn(a)z»

\1 + la/ .=i

will also belong to P. By the classical inequality mentioned further

above, we thus have

I(1 — ia\
(—— W«)    =  |S.(a)|   ^2,

I \1 -f la)

or, more generally,

where X«^0, Xi+ • • • +Xm = l, and au ■ ■ • , am are arbitrary real

numbers. By a suitable passage to the limit we obtain
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I   /* 2r

(13) I      a(t)Bn[a(t)]dt   g 2,

where the only restriction on the real function a(t) is the condition

that Bn[a(t)] be a continuous function in 0g^2x, and a(t) may be

any function which is continuous in this interval and such that

a(t)dt = 1.
o

We now specialize (13) by setting a(t)= tan t. (12) shows that

Bn [a(t) ] is a linear combination of expressions of the form [l +ia(t) ]~",

v = l, 2, • • • , and we thus have to compute the integrals

/' 2*        <r(t)dt rir
-=   I      g-i't Cos"/<r(/)*

o      (1 + i tan t)'    J o

i r2*
(15) = — I      (1 + e-2it)'a(t)dt

2-J o

= T^("N) V'e-^'a(t)dt.
2" „=o \ M / J o

If we write hi(z) =h(pz2) (0<p<l) and observe that hi(z)CP, it is

clear that the function a(t) = (l/27r)Re {hi(eu)} is continuous for

0^t^2ir and satisfies the conditions (14). This function <r(t) may

thus be used in (15). Since

e-2i^d(t)dt = — |     e-2i"'[Ai(e*0 + £(e«)]^ = — ftp", M ̂  0,
0 47T ̂  0 2

we find, on letting p—>1, that y, takes the value (9). A comparison

of (12) and (15) shows that

E(-l)'+ViGi(0) = f> f^W*. [««)]*.
»=1 n-l J 0

In view of (13), this completes the proof of Lemma II.

3. We now compute the leading coefficients An in the expansion

(10). Assuming that b{ =0, we obtain

(16a) Ai = bi - 7iW2,       Ah = 65' - 2Tl52'&3',

(16b) i4, = W - 2yMbl - yibp + y2M\

(16c) A-, = 6/ - 27l62'&6' - 2yMb[ + 3y2b{2bi.

By Lemma (2),  these  coefficients  satisfy  the  inequality  (11)   if
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l-\-b2z2-\-b£z%-\- ■ • ■ is a function of the class P. By virtue of Lemma

I, we may also set

(17) bi = — he,,
2

where g(z) = l-\-b2z2-\-b3z3 + ■ ■ • is the function (6) and H(z)

= l+ciz-fc2z2+ ■ ■ •  is an arbitrary function in P.

With the values (17) of the bi, the expressions (16) become poly-

nomials in the coefficients by, of the same general character as the ex-

pressions (8). If, by judicious choice of the functions which give rise

to the constants cy and y, we can make the coefficients of the cor-

responding monomials in (8) and (16) identical, Theorem I will be

proved. Indeed, An is subject to the inequality (11), and the left-

hand sides of the identities (8) are of the form (n-\-l)an. We proceed

to carry out this program for n = 3, 4, 5, 6.

w = 3: In view of (8b), (16a) and (17), we have to show that the

functions H(z) = l+CiZ+c2z2+ • • • and h(z) = l+p\z+p\z2-f- • • ■ of

P may be so chosen that yic\ = 2, where 71 is given by (9) and £4 = 2.

This can be done in many ways, e.g., h(z)=l (leading to 71 = 1/2),

iJ(z) = (l-f-z)(l-z)-1 = l+2z+2z2 + 2z3 + 2z4+ • • • .

« = 4: In this case, the conditions to be satisfied are 7iC2c3 = 5/3,

C5 = 2, where 7i = (l+/3i/2)/2. One of the many possible choices is

H(z) = (l+z)(l-z)~\   h(z)=5/6+(l-z)(l+z)-l/6 = l-z/3+ ■ ■ ■•

u = 5: The conditions are now

i 3

yic2d = 3/2,        yicz = 4/3,        y2c2 = 1,        c« = 2,

where, by (9),

(18) 71 = (1 + /3i/2)/2,        72 = (1 + Pi + ft/2)/4.

It is easily confirmed that this is satisfied by the functions

4(2)1/2 4(2)1/2 4(2)1/2

= 1 + ——-z+2s2 + ——z3+2z* +-z5 + 2z64- • • •
3 3 3

and
1        1 (1 - z\       1 ( 1 + z*\

h{'}-T+l{—J + 7(—-)

z       z3 ( 3 1\
= 1-1- ■ • • l7i = —'  72 = —I,

2 2 \ 8 8/

both of which belong to P. The reader will have noticed that in all
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these cases the construction of appropriate functions of P is based

on the obvious fact that the function Xi/i(z)+X2/2(z) + • • • +\mfm(z)

will belong to P if X„^0, Xi+ • • • +Xm = l, and f„(z)GP (j" = l,2,
• • • , m).

n = 6: (8d), (16c) and (17) show that we must have

7 7 7 j
— = yic2c6,       — = yiCzd,       — = y2c2c3,       c7 = 2.
5 6 9

These conditions will be satisfied if

28 56/6\1/2

(19)   -"'Ts' ^iijlj)  •
3 3/5X1/2

(20)       c2 = ct = — > c3 = ct = — I —)    ,        c7 = 2.
2 2 \ 6/

That (19) is a possible choice follows from (18) and the fact that the

function

224 /6Y'2     44      ll/l + z\

243 \ 5 / 45     45 \1 - z)

/78     224/6y'2\ /l -z2\

\45      243V5/    / \ 1 + z2/

belongs to P (the sum of the first two numerical terms is positive).

A function H(z) which belongs to P and has the coefficients (20) is

/l + coz      1 + M*8\ /l + z\
7J(z)=x(--+---) + »(--)

\1 — wz      1 — o)*z/ \1 — z/

/ 1 + z7\

where w = exp (2-wi/T) and

■(-(in
x =-,

(IT 3t\
cos-cos — )

7 7/

3   ii-(j)l')cosi

M = — H-
4 /       tt 37r\

4 ( cos-cos — I
V       7 7/
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(it is easily confirmed that 1— 2X— p>0). This disposes of the case

« = 6 and thus completes the proof of Theorem I.

4. The proof of Theorem II is again based on the representation

(7). Comparing (1) and (7), we find that

— (n + l)an = bn+i + F(b2, b3, ■ ■ ■ , bn),

where F is a polynomial of the indicated variables and b2, ■ • • , bn+i

are the leading coefficients of the function (6). The problem |a„|

= max. (f(z)ESt) is thus equivalent to the problem \bn+i-\-F(b2, • • • ,

b„)\ =max. (g(z)EP). Since an may be assumed to be negative (re-

placing/^), if necessary, by Kf(nz), \k\ = 1), this problem may also be

stated in the form Re {b„+i-\-F(b2, ■ • ■ , bn)} =max. Because of the

compactness of P, there exists a function solving this problem, say

go(z) = l+&2'z2+Wz3+ • • • . It is evident that the same function

will also solve the extremal problem

Re {b„+i} = max.,     by = bi,     v - 2, • • - , n,     bi = 0,     g(z) E P-

Except for a trivial passage from bounded functions to functions

with a positive real part, this is identical with the Pick-Nevanlinna

interpolation problem for bounded functions, which is known to be

solved by a function w = g0(z) mapping |z| <1 onto the m times

covered half-plane Re {w} >0, where m^n-\-l [4; 5]. 11 is easy to see

that go(z) must be of the form

•+Z     (1 + KyZ\
(21) *.(*) = EM:-)

„_1        \1  — KVZ/

where \k\ =1, a,~^0 (v = l, • • • , n + 1), and o"i+ • • • +o-n+i = l. In-

deed, the reflection principle shows that g0(z) can have no singularities

except for m simple poles on |z| =1, say k*, • • • , k£, and that g0(z)

is continued across | s| = 1 by means of the formula go(z*~1)* = — go(z).

It follows that

^ C, "+}       C*KrZ

go(z) = Co + 2-,-= - c* + 1^-'
,=.1    1  — KyZ y=l    1  — KyZ

whence

c„
1-KyZ

n+1 Cr

Co + Co + E c"  ~j-   = °-
y=l        I     1 KvZ

This shows that those constants c„ which are not zero must be real,

and that 2Re {c0} +d+Cj+ • • • +c„+i = 0. Hence,
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n+1   r    l 11
go(z) = i Im {co} + 2 c»   :-~

„=i     LI — kvz       2 J

,            1^/1 + *,z\
= tlm \co\ + — 2^c,\--1.

2    r_X        \1  — KrZ/

Because of go(0) = 1, Im {c0} must vanish, and g0(z) is indeed found

to be of the form (21) where the o-„ are real constants such that

o"i+ • • • +o-n+i = l. On \z\ =1, both go(z) and (1+kmz)(1 —kpz)_1 are

pure imaginary. If cr„5^0, both functions tend to —i<x> if z—>k* in the

positive direction. It follows therefore that

/l — k„z\
o-„ = lim I —-1 g0(z)

«"%  \1 + ^Z/

must be positive.

The function f(z) which maximizes | an | within St is related to

go(z) by means of the identity

zf'(z)
—r- = - go(z).
/(z)

Substituting the expression (21), integrating, and writing X„ = 2cr„, we

arrive at the formula (5) for the extremal function. This completes

the proof of Theorem II.
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