DERIVATIONS OF NILPOTENT LIE ALGEBRAS

J. DIXMIER AND W. G. LISTER

In a recent note Jacobson proved [1] that, over a field of characteristic 0, a Lie algebra with a nonsingular derivation is nilpotent. He also noted that the validity of the converse was an open question. The purpose of this note is to supply a strongly negative answer to that question and to point out some of the immediate problems which this answer raises.

Suppose then that Φ is a field of characteristic 0 and that \mathfrak{X} is the 8 dimensional algebra over Φ described in terms of a basis e_1, e_2, \cdots, e_8 by the following multiplication table:

(1)	$[e_1, e_2] = e_5,$	(6)	$[e_2, e_4] = e_6,$
(2)	$[e_1, e_3] = e_6,$	(7)	$[e_2, e_6] = - e_7,$
(3)	$[e_1, e_4] = e_7,$	(8)	$[e_3, e_4] = - e_5,$
(4)	$[e_1, e_5] = - e_8,$	(9)	$[e_3, e_5] = -e_7,$
(5)	$[e_2, e_3] = e_8,$	(10)	$[e_4, e_6] = -e_8.$

In addition $[e_i, e_j] = -[e_j, e_i]$ and for $i < j[e_i, e_j] = 0$ if it is not in the table above. Note that all triple products $[[e_ie_j]e_k]$ vanish if one index is >4. It is convenient to use a symmetry in the table above. Denote by A the linear transformation induced in \mathfrak{L} by the mapping

$$\begin{pmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 \\ e_3 & e_4 & e_1 & e_2 & -e_5 & -e_6 & -e_8 & -e_7 \end{pmatrix}$$

A direct check shows that A is an automorphism of \mathfrak{X} . By observing

$$[[e_1 \ e_2]e_3] + [[e_2 \ e_3]e_1] + [[e_3 \ e_1]e_2] = e_7 - e_7 = 0$$

and

$$[[e_1 \ e_2]e_4] + [[e_2 \ e_4]e_1] + [[e_4 \ e_1]e_2] = 0,$$

and by applying A to each we conclude that \mathfrak{L} is a Lie algebra.

Since $\mathfrak{L}^2 = \{e_5, e_6, e_7, e_8\}, \mathfrak{L}^3 = \{e_7, e_8\}, \mathfrak{L}^4 = \{0\}, \mathfrak{L}$ is nilpotent.

THEOREM. If D is a derivation of \mathfrak{L} then \mathfrak{LOCR}^2 ; hence every derivation is nilpotent.

PROOF. Suppose $e_i D = \sum \delta_{ij} e_j$, $1 \le i \le 8$, $1 \le j \le 8$. The equations

Received by the editors March 1, 1956.

$$[e_1 \ e_2]D = e_5D = \delta_{55}e_5 + \delta_{56}e_6 + \delta_{57}e_7 + \delta_{58}e_8,$$

$$[e_1D, \ e_2] = \delta_{11}e_5 - \delta_{14}e_6 + \delta_{16}e_7 - \delta_{13}e_8,$$

$$[e_1, \ e_2D] = \delta_{22}e_5 + \delta_{23}e_6 + \delta_{24}e_7 - \delta_{25}e_8,$$

imply

$$\delta_{55} = \delta_{11} + \delta_{22}, \quad \delta_{56} = \delta_{23} - \delta_{14}, \quad \delta_{57} = \delta_{16} + \delta_{24}, \quad \delta_{58} = -\delta_{13} - \delta_{25}.$$

With the observation that for $i \leq 4$ and $5 \leq k \leq 8$ there is exactly one $j \leq 6$ for which $[e_i, e_j] = \pm e_k$ it follows from (2) that

 $\delta_{65} = \delta_{14} + \delta_{32}, \quad \delta_{66} = \delta_{11} + \delta_{33}, \quad \delta_{67} = \delta_{15} + \delta_{34}, \quad \delta_{68} = \delta_{12} - \delta_{35},$ from (3) that

$$\delta_{77} = \delta_{11} + \delta_{44}, \quad \delta_{78} = \delta_{16} - \delta_{45}, \quad \delta_{13} = \delta_{42}, \quad \delta_{12} = -\delta_{43}$$

and from (4) that

$$\delta_{87}=\delta_{13},\qquad \delta_{88}=\delta_{11}+\delta_{55}.$$

The automorphism A transforms D into a derivation D^* by $A^{-1}DA = D^*$ and this implies that with each equation $\delta_{ij} = \delta_{kl} + \delta_{mn}$ there is also valid $\delta_{\alpha(i),\alpha(j)} = \delta_{\alpha(k),\alpha(l)} + \delta_{\alpha(m),\alpha(n)}$ where α is the permutation of $\{-8, -7, \cdots, 7, 8\}$ induced by A and where $\delta_{(-1)p_i,(-1)q_j} = (-1)^{p+q}\delta_{ij}$. D operating on (6) provides

 $\delta_{65} = -\delta_{23} - \delta_{41}, \quad \delta_{66} = \delta_{22} + \delta_{44}, \quad \delta_{67} = \delta_{21} - \delta_{46}, \quad \delta_{68} = \delta_{26} + \delta_{43},$ and (7) gives

$$\delta_{77} = \delta_{66} + \delta_{22}, \qquad \delta_{78} = \delta_{24}.$$

From the vanishing of $[e_1, e_6]$ follows $\delta_{12} = 0$, $\delta_{14} = -\delta_{66}$ and from $[e_2, e_6] = 0$, $\delta_{21} = 0$, $\delta_{23} = -\delta_{56}$. Again, another set of equations is obtained by applying A.

Among the ten relations of the form $\delta_{ii} + \delta_{jj} = \delta_{kk}$, eight are linearly independent so that $\delta_{ii} = 0$ for $i = 1, 2, \dots, 8$. The relations

$$\delta_{78} = \delta_{31} = \delta_{24} = \delta_{16} - \delta_{45}$$

and

$$\delta_{57} = \delta_{45} - \delta_{31} = \delta_{16} + \delta_{24}$$

imply

$$\delta_{57} = \delta_{16} = \delta_{45}$$
 and $\delta_{24} = \delta_{78} = \delta_{31} = 0$,

and there are also

$$\delta_{58} = - \delta_{36} = - \delta_{25}, \qquad \delta_{42} = \delta_{87} = \delta_{13} = 0.$$

$$\begin{split} \delta_{21} &= 0 \quad \text{implies} \quad \delta_{43} = 0. \quad \text{The relations} \quad \delta_{68} = \delta_{12} - \delta_{35} = \delta_{26} + \delta_{43} \quad \text{imply} \\ \delta_{68} &= -\delta_{35} = \delta_{26}, \text{ and thus also} \quad \delta_{67} = \delta_{15} = -\delta_{46}. \text{ Since } \delta_{23} = -\delta_{56} \text{ and } -\delta_{65} \\ &= \delta_{23} + \delta_{41} = -\delta_{14} - \delta_{32} = \delta_{41} = \delta_{14}, \end{split}$$

$$\delta_{65} = \delta_{41} = \delta_{23} = \delta_{14} = \delta_{32} = \delta_{56} = 0.$$

The matrix of D is therefore:

$$\begin{bmatrix} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$$

The derivation algebra \mathfrak{D} is 12 dimensional and the algebra \mathfrak{F} of inner derivations 6 dimensional. Every linear transformation sending \mathfrak{L} into the center of \mathfrak{L} and \mathfrak{L}^2 into 0 is a derivation. The ideal \mathfrak{D}_0 of these derivations is 8 dimensional and intersects \mathfrak{F} in a 2 dimensional space. In a sense then \mathfrak{L} has as few outer derivations as possible. More precisely,

$$\mathfrak{N} = \mathfrak{D}_0 + \mathfrak{Z}.$$

The existence of \mathfrak{X} suggests the consideration of a subclass of nilpotent algebras which might prove more tractable than the entire class. To this end, for any algebra \mathfrak{N} with derivation algebra \mathfrak{D} , let

$$\mathfrak{N}^{[1]} = \mathfrak{N}\mathfrak{D} = \{ \sum x_i D_i \mid x_i \in \mathfrak{N}, D_i \in \mathfrak{D} \},\$$

and let

$$\mathfrak{N}^{[k+1]} = \mathfrak{N}^{[k]}\mathfrak{D}.$$

 \mathfrak{N} could be called *characteristically nilpotent* if for some k, $\mathfrak{N}^{\{k\}}=0$. The algebra \mathfrak{L} is characteristically nilpotent and for any such algebra \mathfrak{N} ,

(1) if \mathfrak{N} is an ideal of a solvable algebra \mathfrak{N} then either $\mathfrak{R}^{k} \subset \mathfrak{N}$ for any k or \mathfrak{N} is nilpotent,

(2) if \mathfrak{M} is an algebra with nil-radical \mathfrak{N} then $\mathfrak{M} = \mathfrak{N} \oplus \mathfrak{S}$ for some semi-simple ideal \mathfrak{S} .

One might ask whether there is an intrinsic characterization of such algebras, and a general method for constructing them all.

The algebra \mathfrak{L} has an additional property which may be shared by all characteristically nilpotent algebras: \mathfrak{L} is not the derived algebra of any Lie algebra. To see this, observe that $\mathfrak{L}^{[1]} = \mathfrak{L} = \mathfrak{L}^2$ so that if $\mathfrak{L} \subset \mathfrak{M}$ and $\mathfrak{M}^2 = \mathfrak{L}$, then $[\mathfrak{L} \mathfrak{M}] \subset \mathfrak{L}^{[1]} = \mathfrak{L}^2$. This implies $\mathfrak{L}^2 = [\mathfrak{L} \cap \mathfrak{M}]]$ $\subset [[\mathfrak{L} \mathfrak{M}] \mathfrak{M}] \subset [\mathfrak{L}^2 \mathfrak{M}] \subset [\mathfrak{L}^2 \mathfrak{L}]$, and this contradicts the nilpotency of \mathfrak{L} .

Reference

1. N. Jacobson, A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 281-283.

UNIVERSITY OF PARIS AND BROWN UNIVERSITY