REGULAR COLLINEATION GROUPS

D. R. HUGHES¹

- 1. Introduction. Let $v, k, \lambda, (v > k > \lambda > 0)$ be integers satisfying $\lambda(v-1) = k(k-1)$. Suppose π is a collection of v points and v lines, together with an incidence relation such that every point (line) is on k lines (contains k points), and such that every pair of distinct points (lines) are on λ common lines (contain λ points in common). Then π is a λ -plane, or a (v, k, λ) configuration, or a symmetric balanced incomplete block design (see [1; 3] for more details). If ϕ is a one-to-one mapping of π , sending points onto points and lines onto lines, and preserving incidence, then ϕ is a collineation of π . If π is a λ -plane possessing a collineation group \mathfrak{G} of order m such that no nonidentity element of \mathfrak{G} fixes any point or line of π , then we say that π is regular of degree m (with group \mathfrak{G}). Any λ -plane is regular of degree one, and the "transitive λ -planes" of [1] (including the "cyclic λ -planes" of [4:5]) are regular of degree v (which is clearly the maximum degree of regularity). In this paper we show that regularity implies the existence of a matrix relation similar to the well-known relations involving incidence matrices (see [2; 3]), and indeed, includes these incidence matrix relations as special cases. If $\lambda = 1$, then π is a finite projective plane of order n = k - 1, and we shall be particularly interested in the fact that the theorems of this paper are strong enough to prove, for a wide class of integers n, that no projective plane of order n can be regular of degree greater than one.
- 2. Regular λ -planes. Let π be a λ -plane with parameters v, k, λ , and suppose π is regular of degree m, with group \mathfrak{G} . Then the v points of π break up into t classes \mathcal{O}_1 , \mathcal{O}_2 , \cdots , \mathcal{O}_t , each containing m points, such that \mathfrak{G} is transitive (and regular) on any \mathcal{O}_i ; similarly, the lines break up into t classes \mathcal{G}_1 , \mathcal{G}_2 , \cdots , \mathcal{G}_t , on each of which \mathfrak{G} is transitive. Clearly mt = v. In each \mathcal{O}_i choose a "base point" P_i , and in each \mathcal{G}_i a "base line" J_i . Then every point of \mathcal{O}_i can be expressed uniquely in the form $P_i x$, $x \in \mathfrak{G}$, and every line of \mathfrak{G}_i can be expressed uniquely in the form $J_i x$, $x \in \mathfrak{G}$.

Let D_{ij} be the subset of \mathfrak{G} consisting of all elements x such that $P_{i}x$ is on J_{j} , and let n_{ij} be the number of elements in D_{ij} ; then $n_{ij} \ge 0$.

Presented to the Society, April 14, 1956; received by the editors February 20, 1956.

¹ This research was carried out while the author was a National Science Foundation Fellow.

THEOREM 1. (i) For each i $(i=1, 2, \dots, t)$ and each $a \in \emptyset$, $a \neq 1$, there are exactly λ equations of the form $a = d_1d_2^{-1}$, where d_1 , d_2 are in some D_{ij} ; similarly, there are exactly λ equations of the form $a = d_1^{-1}d_2$, where d_1 , d_2 are in some D_{ii} .

(ii) For each pair $i, j, i \neq j$ $(i, j = 1, 2, \dots, t)$, and each $a \in \mathfrak{G}$, there are exactly λ equations of the form $a = d_1 d_2^{-1}$, where d_1 is in D_{jl} , d_2 is in D_{il} , for some l; similarly, there are exactly λ equations of the form $a = d_1^{-1}d_2$, where d_1 is in D_{ij} , d_2 is in D_{ii} , for some l.

PROOF. Given i and $a \in \emptyset$, $a \neq 1$, consider the λ lines joining P_i and P_{ia} ; there must be exactly λ values of j and b such that P_{i} , P_{ia} are on J_jb . For each such line J_jb , we have $ab^{-1}=d_1 \in D_{ij}$, $b^{-1}=d_2 \in D_{ij}$, whence $a = d_1 d_2^{-1}$. By a reversal of the argument, it is easy to see that these λ equations are unique.

Given $i, j, i \neq j$, and $a \in \emptyset$, consider the λ lines joining P_i and $P_j a$; there must be exactly λ values of l and b such that P_i , $P_j a$ are on $J_i b$. Then, as above, we get λ equations $a = d_1 d_2^{-1}$, where d_1 is in D_{ii} , d_2 is in D_{il} , and these λ equations are unique.

By similar considerations with the λ points $P_i b$ on J_i and $J_i a$, or on J_i and $J_j a$, the other halves of (i) and (ii) are proven.

THEOREM 2. Letting $n = k - \lambda$, the n_{ij} satisfy:

- (i) $\sum_{j} n_{ij} = \sum_{j} n_{ji} = k$, for any *i*. (ii) $\sum_{j} n_{ij}^2 = \sum_{j} n_{j}^2 = n + \lambda m$, for any *i*.
- (iii) $\sum_{l} n_{il} n_{jl} = \sum_{l} n_{li} n_{lj} = \lambda m$, for any $i, j, i \neq j$.

PROOF. The line J_i contains n_{ji} points of O_j , hence contains altogether $\sum_{i} n_{ji} = k$ points. Since n_{ij} images of P_i are on J_j , there are n_{ij} images of J_i containing P_i , hence n_{ij} lines of g_i through P_i . So P_i is on altogether $k = \sum_{i} n_{ij}$ lines. Thus we have (i).

For a fixed i, each $a \in \emptyset$, $a \neq 1$, is represented exactly λ times among all the elements $d_1d_2^{-1}$, d_1 , $d_2 \in D_{ij}$, as j varies. On the other hand, all the elements $d_1d_2^{-1}$, d_1 , $d_2 \in D_{ij}$, $d_1 \neq d_2$ as j varies, make up a set of $\sum_{j} n_{ij}(n_{ij}-1) \text{ elements. Hence } \sum_{j} n_{ij}(n_{ij}-1) = \lambda(m-1), \text{ or } \sum_{j} n_{ij}(n_{ij}-1) = \lambda(m-1),$ $\sum_{i} n_{ij}^{2} = \lambda m - \lambda + k = n + \lambda m$, using (i). The other half of (ii) is similar.

Finally, for a fixed $i, j, i \neq j$, each $a \in \emptyset$ is represented exactly λ times as $a = d_1 d_2^{-1}$, where $d_1 \in D_{jl}$, $d_2 \in D_{il}$, as l varies. Thus $\sum_{l} n_{il} n_{jl}$ half of (iii) is similar.

Now if A is a matrix, let A^T be the transpose of A. Then it is im mediate that Theorem 2 can be rephrased as follows, where $A = (n_{ij})$.

THEOREM 3. If π is a regular λ -plane of degree m, with parameters v, k, λ , then there is a square matrix A of order t = v/m, consisting entirely of non-negative integral entries, such that $A^TA = AA^T = B$, where B has $n+\lambda m$ on the main diagonal and λm elsewhere. Furthermore, every row or column of A sums to k. (Here $n=k-\lambda$.)

THEOREM 4. If π is a regular λ -plane of degree m, with the parameters v, k, λ , and if t = v/m is odd, then the equation

(1)
$$x^2 = ny^2 + (-1)^{(t-1)/2} \lambda mz^2,$$

where $n = k - \lambda$, possesses a nontrivial solution in integers.

PROOF. The theorem follows from Theorem 3 and the Lemma of [5].

The equation (1) can be handled by the classical theory of Legendre, and yields nontrivial information for many choices of v, k, λ . If m=1, then the matrix relation of Theorem 3 is exactly the incidence matrix equation for a λ -plane [2; 3]; in that light, the concept of a regular λ -plane can be thought of as a notion which includes the most basic combinatorial (or geometric) information as a "special case."

For $\lambda > 1$, $k \le 30$, it is fairly easy to investigate all λ -planes, in connection with Theorem 4. If v is a prime, then either m=1 or m=v, so we disregard these cases; furthermore we neglect those choices of v, k, λ , which are rejected by [3] (i.e., by Theorem 4 with m=1). Of the remaining cases, the following cannot be regular of degree greater than one (the parameters (v, k, λ) are listed): (25, 9, 3), (25, 16, 10), (121, 16, 2), (39, 19, 9), (39, 20, 10), (201, 25, 3), (55, 27, 13), (55, 28, 14). Although Theorem 4 gives no direct information about m=v, if m is rejected for some prime-power divisor of v, then m=v is impossible: for a regular group of order $v=p^aq$, p a prime, a>0, certainly contains a regular subgroup of order p^a . Thus (245, 27, 3) is handled: for m=7 or m=49, Theorem 4 offers no information, but m=5 is impossible, and so m=245 is also impossible. (In this connection see Theorem 4.1 of [1] and Theorem 2.1 of [4].)²

3. Regular projective planes. If $\lambda = 1$, then π is a finite projective plane of order n = k - 1, and $v = n^2 + n + 1$. Since v is always odd, t = v/m is always odd, so Theorem 4 always applies.

There are 18 integers $n \le 60$ which are not prime-powers, are not rejected by [2], and for which n^2+n+1 is not a prime. For eight of these integers (18, 28, 36, 44, 45, 48, 52, 56), Theorem 4 gives no information. For eight others (10, 26, 34, 35, 39, 40, 51, 60), Theorem

² In papers forthcoming in the Transactions of the American Mathematical Society and the Illinois Journal of Mathematics the author gives a more general treatment of collineations of (v, k, λ) configurations, including nonexistence theorems.

4 tells us that any plane of order n cannot be regular of degree m > 1. For n = 55, $n^2 + n + 1 = 3 \cdot 13 \cdot 79$, Theorem 4 rejects all values of m > 1 except m = 79 or m = 39; but since m = 3 and m = 13 are rejected, m = 39 is impossible. (Thus, oddly, Theorem 4 can give more information indirectly than directly.) For n = 58, $n^2 + n + 1 = 3 \cdot 7 \cdot 163$, Theorem 4 rejects all values of m > 1 except m = 7. In each of these cases, some prime divisor of $n^2 + n + 1$ is rejected, so $m = n^2 + n + 1$ is impossible.

Any Desarguesian projective plane of order n is regular of degree m, for any m dividing n^2+n+1 (see [7]). The only other examples (known to the author) of planes which are regular of degree m>1 are the planes given in [6]: the planes of this class are all non-Desarguesian and a typical plane has order p^{2a} , p an odd prime, and is regular of degree m for any m dividing $p^{2a}+p^a+1$.

BIBLIOGRAPHY

- 1. R. H. Bruck, Difference sets in a finite group, Trans. Amer. Math. Soc. vol. 78 (1955) pp. 464-481.
- 2. R. H. Bruck and H. J. Ryser, The non-existence of certain finite projective planes, Canadian Journal of Mathematics vol. 1 (1949) pp. 88-93.
- 3. S. Chowla and H. J. Ryser, *Combinatorial problems*, Canadian Journal of Mathematics vol. 2 (1950) pp. 93-99.
- 4. Marshall Hall, Jr., Cyclic projective planes, Duke Math. J. vol. 14 (1947) pp. 1079-1090.
- 5. Marshall Hall, Jr. and H. J. Ryser, Cyclic incidence matrices, Canadian Journal of Mathematics vol. 3 (1951) pp. 495-502.
- 6. D. R. Hughes, A class of non-Desarguesian projective planes, To appear in Canadian Journal of Mathematics.
- 7. James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. vol. 43 (1938) pp. 377-385.

THE OHIO STATE UNIVERSITY