
REGULAR COLLINEATION GROUPS

D. R. HUGHES1

1. Introduction. Let v, k, X, (v>k>\>0) be integers satisfying

\(v — 1) =k(k — 1). Suppose 7r is a collection of v points and v lines,

together with an incidence relation such that every point (line) is on

k lines (contains k points), and such that every pair of distinct points

(lines) are on X common lines (contain X points in common). Then 7r is

a X-plane, or a (v, k, X) configuration, or a symmetric balanced incom-

plete block design (see [l; 3] for more details). If 0 is a one-to-one

mapping of ir, sending points onto points and lines onto lines, and

preserving incidence, then <j> is a collineation of tt. If tt is a X-plane

possessing a collineation group ® of order m such that no nonidentity

element of @ fixes any point or line of ir, then we say that ir is regular

of degree m (with group @). Any X-plane is regular of degree one, and

the "transitive X-planes" of [l] (including the "cyclic X-planes" of

[4; 5]) are regular of degree v (which is clearly the maximum degree

of regularity). In this paper we show that regularity implies the

existence of a matrix relation similar to the well-known relations in-

volving incidence matrices (see [2; 3]), and indeed, includes these

incidence matrix relations as special cases. If X = 1, then x is a finite

projective plane of order n = k — l, and we shall be particularly inter-

ested in the fact that the theorems of this paper are strong enough

to prove, for a wide class of integers n, that no projective plane of

order n can be regular of degree greater than one.

2. Regular X-planes. Let irbea X-plane with parameters v, k, X,

and suppose w is regular of degree m, with group ©. Then the v points

of ir break up into / classes (Pi, (P2, • • • , (Pi, each containing m points,

such that © is transitive (and regular) on any <?,-; similarly, the lines

break up into t classes gi, $2, • • • , $t, on each of which © is transitive.

Clearly mt = v. In each (P.- choose a "base point" P,-, and in each $,• a

"base line" Ji. Then every point of (P,- can be expressed uniquely in

the form P,-x, x£®, and every line of g, can be expressed uniquely in

the form J(x, x£®.

Let Dij be the subset of ® consisting of all elements x such that

P,x is on Jj, and let ny be the number of elements in Dy; then «,y = 0.
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Theorem 1. (i) For each i (i = l, 2, • • • , t) and each aE®, a?*l,

there are exactly X equations of the form a = did2~1, where du d2 are in

some Dif, similarly, there are exactly X equations of the form a = dr1d2,

where di, d2 are in some Dji.

(ii) For each pair i,j, ij^j (i, j =1,2, ■■• ,t), and each aE®, there

are exactly X equations of the form a=did2~1, where di is in Dji, d2 is in

T>n, for some I; similarly, there are exactly X equations of the form

a = d^di, where di is in Dij, d2 is in Du, for some I.

Proof. Given i and aE®, a5*1, consider the X lines joining P,-

and Pi/a; there must be exactly X values of j and b such that Pi, P,a

are on Jjb. For each such line Jjb, we have ab~x = di ED a, b~x = d2ET>a,

whence a = did2~1. By a reversal of the argument, it is easy to see that

these X equations are unique.

Given i, j, i^-j, and aE®, consider the X lines joining P,- and Pja;

there must be exactly X values of / and b such that P,-, P,a are on

Jib. Then, as above, we get X equations a = did21, where di is in Dji,

d2 is in Dn, and these X equations are unique.

By similar considerations with the X points Pib on /,- and Jta, or

on Ji and 7ya, the other halves of (i) and (ii) are proven.

Theorem 2. Letting n = k—\, the tin satisfy:

(i)   X); na = 2~li na — k, for any i.
(ii)   2~li nh = £j' n2i = n+\m, for any i.
(iii)   J2i nitnn = 2~li nuntj=\m, for any i, j, i^j.

Proof. The line Ji contains «,< points of (Py, hence contains alto-

gether 2~li na = k points. Since w.-y images of P.- are on 7y, there are

«,y images of 7y containing Pi} hence w,y lines of gj through Pi. So P,-

is on altogether k= 2li n*i lines. Thus we have (i).

For a fixed i, each aE®, a 5^1, is represented exactly X times among

all the elements did2x, d\, d2EDij, as j varies. On the other hand, all

the elements didf1, d\, d2EDn, di^d2, as j varies, make up a set of

y),- «,y(wiy—1) elements. Hence 2/ «ty(«<y —1) =X(m —1), or

2~2,-n2j = 'Km—'K+k=n+'Km, using (i). The other half of (ii) is similar.

Finally, for a fixed i, j, ij^j, each aE® is represented exactly X

times as a = didr1, where diEDn, d2EDu, as I varies. Thus 2~Li Kitnjt

must count every element of © X times, so ^; «,-i«,-i =\m. The other

half of (iii) is similar.
Now if A is a matrix, let AT be the transpose of A. Then it is im

mediate that Theorem 2 can be rephrased as follows, where A = (tin).

Theorem 3. If ir is a regular \-plane of degree m, with parameters

v, k, X, then there is a square matrix A of order t = v/m, consisting en-
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tirely of non-negative integral entries, such that ATA =AAT — B, where

B has n+\m on the main diagonal and\m elsewhere. Furthermore, every

row or column of A sums to k. (Here n = k—\.)

Theorem 4. If iris a regular \-plane of degree m, with the parameters

v, k, X, and if t = v/m is odd, then the equation

(1) x2 = wy2 + (-1)«-«>2\mz2,

where n = k—\, possesses a nontrivial solution in integers.

Proof. The theorem follows from Theorem 3 and the Lemma of

[5].
The equation (1) can be handled by the classical theory of Legendre,

and yields nontrivial information for many choices of v, k, X. If m = 1,

then the matrix relation of Theorem 3 is exactly the incidence matrix

equation for a X-plane [2; 3 ]; in that light, the concept of a regular

X-plane can be thought of as a notion which includes the most basic

combinatorial (or geometric) information as a "special case."

For X> 1, k ^ 30, it is fairly easy to investigate all X-planes, in con-

nection with Theorem 4. If v is a prime, then either m = l or m=v,

so we disregard these cases; furthermore we neglect those choices of

v, k, X, which are rejected by [3] (i.e., by Theorem 4 with m = l). Of

the remaining cases, the following cannot be regular of degree greater

than one (the parameters (v, k, X) are listed): (25, 9, 3), (25, 16, 10),

(121, 16, 2), (39, 19, 9), (39, 20, 10), (201, 25, 3), (55, 27, 13), (55, 28,
14). Although Theorem 4 gives no direct information about m=v,

if m is rejected for some prime-power divisor of v, then m =v is impos-

sible: for a regular group of order v = p"q, p a prime, a>0, certainly

contains a regular subgroup of order p". Thus (245, 27, 3) is handled:

for m = 7 or m=49, Theorem 4 offers no information, but m = 5 is

impossible, and so m = 245 is also impossible. (In this connection see

Theorem 4.1 of [l] and Theorem 2.1 of [4].)2

3. Regular projective planes. If X = l, then ir is a finite projective

plane of order n — k — l, and v = n2+n + l. Since v is always odd,

t = v/m is always odd, so Theorem 4 always applies.

There are 18 integers w^60 which are not prime-powers, are not

rejected by [2], and for which n2+n + l is not a prime. For eight of

these integers (18, 28, 36, 44, 45, 48, 52, 56), Theorem 4 gives no

information. For eight others (10, 26, 34, 35, 39, 40, 51, 60), Theorem

2 In papers forthcoming in the Transactions of the American Mathematical

Society and the Illinois Journal of Mathematics the author gives a more general treat-

ment of collineations of (v, k, X) configurations, including nonexistence theorems.
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4 tells us that any plane of order n cannot be regular of degree m>l.

For n = 55, n2+n + l =3-13-79, Theorem 4 rejects all values of m>l

except m = 79 or m = 39; but since m = 3 and m = 13 are rejected,

m = 39 is impossible. (Thus, oddly, Theorem 4 can give more informa-

tion indirectly than directly.) For w = 58, n2+n + l =3-7-163, Theo-

rem 4 rejects all values of m> 1 except m = 7. In each of these cases,

some prime divisor of n2+n + l is rejected, so m = n2+n + l is impos-

sible.
Any Desarguesian projective plane of order n is regular of degree m,

for any m dividing n2+n + l (see [7]). The only other examples

(known to the author) of planes which are regular of degree m>l are

the planes given in [6]: the planes of this class are all non-Desar-

guesian and a typical plane has order p2a, p an odd prime, and is

regular of degree m for any m dividing p2a+p" + l.
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