REGULAR COLLINEATION GROUPS
D. R. HUGHES!

1. Introduction. Let v, k2, N\, (#>%k>N>0) be integers satisfying
Av—1) =k(k—1). Suppose 7 is a collection of v points and v lines,
together with an incidence relation such that every point (line) is on
k lines (contains k points), and such that every pair of distinct points
(lines) are on A common lines (contain A points in common). Then 7 is
a A-plane, or a (v, k, N\) configuration, or a symmetric balanced incom-
plete block design (see [1; 3] for more details). If ¢ is a one-to-one
mapping of , sending points onto points and lines onto lines, and
preserving incidence, then ¢ is a collineation of . If = is a N-plane
possessing a collineation group ® of order m such that no nonidentity
element of ® fixes any point or line of 7, then we say that « is regular
of degree m (with group ®). Any N-plane is regular of degree one, and
the “transitive N-planes” of [1] (including the “cyclic A-planes” of
[4; 5]) are regular of degree v (which is clearly the maximum degree
of regularity). In this paper we show that regularity implies the
existence of a matrix relation similar to the well-known relations in-
volving incidence matrices (see [2; 3]), and indeed, includes these
incidence matrix relations as special cases. If A=1, then 7 is a finite
projective plane of order n =%k —1, and we shall be particularly inter-
ested in the fact that the theorems of this paper are strong enough
to prove, for a wide class of integers #, that no projective plane of
order # can be regular of degree greater than one.

2. Regular N-planes. Let 7 be a A-plane with parameters v, &, \,
and suppose 7 is regular of degree m, with group ®. Then the v points
of w break up into ¢ classes ®;, @, - + -, ®;, each containing m points,
such that @ is transitive (and regular) on any ®;; similarly, the lines
break up into ¢ classes §1, g2, - * + , Js, on each of which @ is transitive.
Clearly mt=v. In each ®; choose a “base point” P;, and in each g; a
“base line” J;. Then every point of ®; can be expressed uniquely in
the form P, x €@, and every line of §; can be expressed uniquely in
the form Jx, xE®.

Let D;; be the subset of & consisting of all elements x such that
Pixis on J;, and let #;; be the number of elements in D,;; then #;;=0.
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THEOREM 1. (i) For each i (i=1,2, - - -, t) and each a EO, a#1,
there are exactly N equations of the form a=d,dsi!, where di, d; are in
some D;;; similarly, there are exactly N equations of the form a=di'd,,
where dy, dy are in some Dj;.

(ii) For each pairi,j,15%j (4,7=1,2, - - -, 1), and each a EO, there
are exactly N equations of the form a =d\d5!, where dy is in Dji, dy is in
Dy, for some 1; similarly, there are exactly N equations of the form
a=dild,, where dy is in Dj, ds is in Dy, for some l.

ProorF. Given 7 and a €®, a1, consider the N lines joining P;
and Pa; there must be exactly N\ values of j and b such that P;, Pia
are on J;b. For each such line J;b, we have ab='=d1ED;;, b =d, E D,
whence a =didi1. By a reversal of the argument, it is easy to see that
these N\ equations are unique.

Given 1, j, 14, and a €®, consider the A lines joining P; and P;a;
there must be exactly N values of / and & such that P;, P;a are on
Jb. Then, as above, we get N equations ¢ =d,d;}, where d; is in Dy,
ds is in Dy, and these N equations are unique.

By similar considerations with the X points P on J; and Jua, or
on J; and Jja, the other halves of (i) and (ii) are proven.

THEOREM 2. Letting n =k —N\, the ni; satisfy:

() 25 ms= 205 mii=Fk, for any i.

() D ndj= D ; nis=n+Nm, for any i.

(i) D1 mamp= D1 mumi=Nm, for any s, j, 1 #j.

Proor. The line J; contains #;; points of ®;, hence contains alto-
gether Y ; n;;=F points. Since 7;; images of P; are on Jj, there are
n; images of J; containing P;, hence #;; lines of g; through P.. So P;
is on altogether k= D_; n; lines. Thus we have (i).

For a fixed ¢, each a €@, a1, is represented exactly A times among
all the elements dids!, di, d2 & Dyj, as j varies. On the other hand, all
the elements didi!, di, doED;j, di#ds, as j varies, make up a set of
>; mij(ni;—1) elements. Hence > mij(ni;—1)=Nm—1), or
> int;=Am—N+Ek=n-+Nm, using (i). The other half of (ii) is similar.

Finally, for a fixed 4, j, 1], each a €® is represented exactly A
times as a =dydi’!, where dyED;;, do© Dy, as [ varies. Thus Z; NNy
must count every element of @ \ times, so Y 7y =Am. The other
half of (iii) is similar.

Now if 4 is a matrix, let A7 be the transpose of A. Then it is im
mediate that Theorem 2 can be rephrased as follows, where 4 = (n,;).

THEOREM 3. If m is a regular \-plane of degree m, with parameters
v, k, \, then there is a square matrix A of order t=v/m, consisting en-
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tirely of non-negative integral entries, such that ATA=AAT =B, where
B has n-+\m on the main diagonal and Nm elsewhere. Furthermore, every
row or column of A sums to k. (Here n=k—N\.)

THEOREM 4. If 7 is a regular N-plane of degree m, with the parameters
v, B, \, and if t=v/m is odd, then the equation

1 x? = ny? 4 (—1)D/2ma?,
where n="Fk —\, possesses a nontrivial solution in integers.

ProoF. The theorem follows from Theorem 3 and the Lemma of
[5].

The equation (1) can be handled by the classical theory of Legendre,
and yields nontrivial information for many choices of v, 2, \. If m =1,
then the matrix relation of Theorem 3 is exactly the incidence matrix
equation for a A-plane [2; 3]; in that light, the concept of a regular
A-plane can be thought of as a notion which includes the most basic
combinatorial (or geometric) information as a “special case.”

For A>1, £<30, it is fairly easy to investigate all A-planes, in con-
nection with Theorem 4. If v is a prime, then either m=1 or m =9,
so we disregard these cases; furthermore we neglect those choices of
v, k, \, which are rejected by [3] (i.e., by Theorem 4 with m=1). Of
the remaining cases, the following cannot be regular of degree greater
than one (the parameters (v, &, \) are listed): (25, 9, 3), (25, 16, 10),
(121, 16, 2), (39, 19, 9), (39, 20, 10), (201, 25, 3), (55, 27, 13), (55, 28,
14). Although Theorem 4 gives no direct information about m =g,
if m is rejected for some prime-power divisor of v, then 7z =v is impos-
sible: for a regular group of order v=p%, p a prime, a >0, certainly
contains a regular subgroup of order p% Thus (245, 27, 3) is handled:
for m=7 or m =49, Theorem 4 offers no information, but m=35 is
impossible, and so m =245 is also impossible. (In this connection see
Theorem 4.1 of [1] and Theorem 2.1 of [4].)2

3. Regular projective planes. If A=1, then = is a finite projective
plane of order n=%k—1, and v=%n%+nr+1. Since v is always odd,
t=v/m is always odd, so Theorem 4 always applies.

There are 18 integers # <60 which are not prime-powers, are not
rejected by [2], and for which #2+#%+1 is not a prime. For eight of
these integers (18, 28, 36, 44, 45, 48, 52, 56), Theorem 4 gives no
information. For eight others (10, 26, 34, 35, 39, 40, 51, 60), Theorem

2 In papers forthcoming in the Transactions of the American Mathematical
Society and the Illinois Journal of Mathematics the author gives a more general treat-
ment of collineations of (v, k, \) configurations, including nonexistence theorems.



168 D. R. HUGHES

4 tells us that any plane of order # cannot be regular of degree m > 1.
For n=55,n*+n+1=3-13-79, Theorem 4 rejects all values of m >1
except m=179 or m=39; but since m=3 and m =13 are rejected,
m =39 is impossible. (Thus, oddly, Theorem 4 can give more informa-
tion indirectly than directly.) For n =358, n24+n+1=3-7-163, Theo-
rem 4 rejects all values of m>1 except m="7. In each of these cases,
some prime divisor of #2+n--1 is rejected, so m =n?+#n+1 is impos-
sible.

Any Desarguesian projective plane of order # is regular of degree m,
for any m dividing n2+n-+1 (see [7]). The only other examples
(known to the author) of planes which are regular of degree m >1 are
the planes given in [6]: the planes of this class are all non-Desar-
guesian and a typical plane has order $%, p an odd prime, and is
regular of degree m for any m dividing p*+4p%+1.
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