
INTEGRAL REPRESENTATIONS OF CYCLIC GROUPS
OF PRIME ORDER

IRVING REINER1

1. Elementary facts. In this paper we shall extend a result due to

Diederichsen [2 ] on integral representations of cyclic groups of prime

order, and shall simplify the proof thereof. Let Z denote the ring of

rational integers, Q the rational field. If R is a ring, by a regular R-

module we shall mean a finitely-generated torsion-free P-module.

Lemma 1 (Zassenhaus [9]). Let R be a regular Z-module contained

in afield K, and suppose R contains a Q-basis of K. Then every irreduci-

ble regular R-module is R-isomorphic to an ideal in R. Two ideals in R

are R-isomorphic (as R-modules) if and only if they lie in the same ideal

class.

Remark. In terms of matrix representations, this lemma implies

that there is a one-to-one correspondence between classes (under uni-

modular equivalence) of irreducible ^-representations of R and ideal

classes of P. A full set of inequivalent irreducible matrix representa-

tions is obtained by restricting the regular representation of R to a

full set of inequivalent ideals in R. In particular, let/(x)£Z[x] be

irreducible, and set P = Z[0] where 6 is a zero of f(x). Since every ir-

reducible representation of R is described by 6—>X, where X is an

integral nonderogatory solution of f(X) =0, the number of unimodu-

lar classes of such matrix solutions coincides with the class number of

Z[6]. (See [5; 8].)
Now let o be a Dedekind ring (see [4]) which is assumed to be a

regular Z-module. By Lemma 1, every irreducible regular o-module

is o-isomorphic to an ideal in o.

Lemma 2 (Steinitz [7], Chevalley [l]. This result can also be

deduced from [6]). Every regular o-module is o-isomorphic to a direct

sum Sliffi • • ■ ©2l„ of ideals in o. The o-rank n and the ideal class of

SIi • • • Sin are the only invariants, and determine the module up to

o-isomorphism.

Remark. Let f(x)CZ[x] be a monic irreducible polynomial, and

let/(0) =0. Assume that Z[Q] coincides with the ring of all algebraic
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integers in Q(0). Then Z[d] is a Dedekind ring, and the lemma implies

that every integral matrix X for which f(X) =0, is integrally decom-

posable into a direct sum of irreducible matrices satisfying f(X) =0.

Lemma 3. Let e and S8 be ideals in o. Then there exists an o-auto-

morphism of 0©$ which maps effi© isomorphically onto o©eS3.

Proof. Since only ideal classes are involved, we may assume

e+33 = o. Choose e0Ge, boE$$ such that eo — bo = l. Then define an

o-linear map <j>: o©SB—>o©33 by means of

4>(a, b) = (a + b, abo + e0b), a E o, b E S3-

It is easily verified that <j> is the desired o-automorphism of o©33.

2. Cyclic groups. Let G= {g} be a cyclic group of prime order p,

and let Z[g] be its group ring over the integers. We shall use the re-

sults of the previous section to classify all Z-regular Z[g]-moduIes.

Define s = l+g+ • • • +gp-1EZ[g]. Let M be a Z-regular Z[g]-mod-

ule, and define

(1) M. = {mE M:sm = 0}.

We may then view M, as a Z[g]/(.s)-module, where (s) is the prin-

cipal ideal generated by s. However, Z[g]/(s)=Z[0], where 0 is a

primitive pth root of 1. Further, Z[0] is a Dedekind ring, hereafter

denoted by o.

Now we observe that

(2) M. D (g - 1)M D(0- 1)M„

all considered as o-modules. By Lemma 2, we may write

(3) M. = o © • • • © o © 21,

where n (the number of summands) and the ideal class of the ideal 31

in o are uniquely determined. Using (2), we find that as o-module,

(4) (g - 1)M = d © • • • © en_i © eJBL,

with the e, ideals in o. From the second inclusion in (2), we see that

each e,- is either o or the principal prime ideal (0 — 1). By permuting

the summands, and using Lemma 3 if necessary, we may then assume

that

(5) ei - • ■ • - e, = 0,       er+i = • • • = e„ = (0 - 1).

In that case, the quotient module

B = (g- l)M/(0 - l)M. & o/(0 -!)©•■■© o/(0 - 1),
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where r summands occur. Since (6 — 1) is an ideal of norm p, we see

that B is an additive abelian group of type (p, ■ ■ ■ , p), and the

integer r is thus uniquely determined as the rank of B. Let us fix Bk

in the &th summand of (3) so that B is generated by the cosets

0i+(0-l), • • • ,j8r+(0-l) (or pn + (0 — 1)31 in case r = n). For exam-

ple, we may choose /3* to be the unit element in o for k<n, while if

r = n, we choose j3„E2l such that j8„£ (0-1)31.

On the other hand, M/M, is a regular Z-module, and therefore

M, is a Z-direct summand of M. Choose a regular Z-module X such

that M is the direct sum of M, and X. Then

(g - l)M - (0 - 1)M. + (g - 1)Z,

so that the map <p:X-+B defined by

4>(x) = (g- l)x + (6 - 1)14". for x G Z

is a linear map of X onto B. With each xCX we may thus associate

an r-tuple («i, • • • , ar) (also denoted by <p(x)) such that

(g - l)x m aifii + ■ • • + arj3r (mod (6 - l)M,),

with each aiCZ = Z/pZ. By choosing a suitable Z-basis Xi, • • • , xm

of X, we may assume that the vectors <j>(xi), ■ ■ ■ , 4>(xr) are linearly

independent over Z. Under a further change of Z-basis of X, we may

then take

(g - l)x{ = dpi, (g - l)x,- = 0 (mod (9 - l)M„

(I ^i^r,r<j^m),

where each c(CZ, c^O (mod p). Set (g — l)x< = c,-/8,-+(g — 1)m,-,

(g — l)xj = (g — l)uj (l^i^r, r<j^m), with each UiCM„ and define

yi=Xi — Ui (l^i^m). Then we have

(6) M = M,®Zyi@ ■ ■ ■ © Zym,

where

(7) ^ = y, + c- fr, gy,- = y,- (U»^,r<i^)

and where iii", defined by (3) is made into a Z[g]-module by

(8) gm = 0w for m C Ms.

The structure of M is completely determined by the ideal class of

SI, the integers r = Z-rank of B, m=Z-rank of M/M„ n = o-rank of M„

and by the constants a, ■ • ■ , c We show now that we may in fact

take each a = 1; this is a consequence of the following:
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Lemma 4. Let SI be an ideal in o, let /SG3I be fixed, and let cEZ,
c^O (mod p). Let Mi-%®Zyi be made into a Z[g]-module by defining

ga=0a for a £21, gyi-yi+P- Let M=fL@Zy2 be made into a Z[g\-

module by defining ga = 6a for a £21, gyi=y2+cP. Then Mi and M are

Z [g ̂ -isomorphic.

Proof. Set w = l+0+ • ■ • +0c-1 = unit in o. Since u-c = (0-l)

+ (d2-l)+ ■ • • +(dc-1-l), we may choose *£8t so that (0-l)t

= (u—c)p. Now define a linear map <p: Mi-*M by

<p(a) = ua,     aE §1,     <t>(yi) = yt + t.

Then gcf>(a) =<f>g(a) for all a£31, and also

g<p(yi) = g(yt + t) = y2 + cp + et = y2 + t + up = 4>g(y0-

Thus <j> is a Z[g]-isomorphism of Mi onto M.

To summarize, we have thus shown:

Theorem. Every Z-regular Z[g]-module is operator-isomorphic to a

module defined by (3), (6), (7), and (8), with Ci= ■ ■ ■ =c,= l. The

invariants which uniquely determine such a module (up to isomorphism)

are: the ideal class of 31, n = o-rank of M„ m=Z-rank of M/M„ and

r = Z-rank of (g — l)M/(d — l)Ms; the only restrictions on these invari-

ants are the conditions r^m, r^n. Conversely, for any such choice of

invariants, equations (3), (6), (7), and (8) define a Z[g]-module with

the given invariants.

Corollary (See [2; 3].) The integrally-indecomposable regular

Z[g]-modules are those for which either r = w = 0, m — 1, or r = m = 0,

« = 1, or r = m=n = l. The number of nonisomorphic modules of these

types is 2h + l, where h is the class number of o.
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FLEXIBLE ALMOST ALTERNATIVE ALGEBRAS1

D. M. MERRIELL

1. Introduction. Almost left alternative algebras were defined by

Albert in [l ]. They are algebras A over a field F of characteristic not

two which satisfy these postulates:

I. The elements of A satisfy an identity of the form

z(xy) = a(zx)y + P(zy)x + y(xz)y + 8(yz)x + ey(zx)

+ -nx(zy) + o-y(xz) + rx(yz)

for elements a, P, y, 8, e, r\, <r, r in F which are independent of x, y, z

in A.
II. The relation xx2 = x2x holds for every x of A.

III. There exists an algebra B with a unity quantity e such that B

satisfies (1) and is not a commutative algebra.

An algebra is called almost right alternative if I, II, and III hold

with (1) replaced by an identity of the same form but with z(xy)

replaced by (xy)z. These two identities are the general shrinkability

conditions of level one, as defined by Albert in [2 ]. An almost alterna-

tive algebra is one which is both almost left alternative and almost

right alternative.

Reference is made in [l] to several results which are proved here.

In addition to the above postulates, we assume the flexible law, that

is, (xy)x = x(yx) for every x and y in A. This makes Postulate II

redundant. Albert confined his investigation in [l] to nonflexible

algebras.
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