
ON MEROMORPHIC FUNCTIONS OF BOUNDED
CHARACTERISTIC

DAVID A. STORVICK1

1. Introduction. Let w=f(z) be meromorphic in \z\ <1, and let

the characteristic function T(r,f) be bounded, i.e., T(r, f)=0(l) in

\z\ <1. If the radial limit values f*(em) = limr_i f(reie) (which exist

and are finite for almost all ew on \z\ =1 by the Fatou-Nevanlinna

theorem)2 have modulus one for almost all ew, we shall say that/(z)

is of class (B) in \z\ <1; if, in addition, a function/(z) of class (B) is

bounded, |/(z)| <1 in |z| <1, we shall say that/(z) is of class (A) in

\z\ <1. The principal result concerning functions of class (A) is the

following theorem of W. Seidel [12, p. 205] which we state for refer-

ence in the sequel.

Theorem 1. Let w =f(z) be of class (A) in \z\ < 1, and take there the

value a, \a\ <1 at most a finite number of times. Then, unless f(z) re-

duces identically to a finite Blaschke product in \z\ < 1 giving the most

general (m, 1) conformal map of \z\ <1 onto \w\ <1, there exists at

least one radius 6 = do, such that f*(eie°) =a.

It has been shown by G. Hossjer [5, p. 55] that the radial limit

values of a nonconstant function/(z) of class (A) comprise a set E of

measure 2ir on \w\ =1. It follows almost trivially from Theorem 1

that every point of \w\ =1 belongs to the set E. Indeed, if e'x is an

arbitrary point of \w\ =1, the function

/(*) + «ft

I (*) = exp —-
f(z) — elX

is of class (A) in \z\ <1 and omits the value 0. By Theorem 1, there

exists at least one radius 9 = 90, for which g*(ew«) =limr^i g(reu°) =0,

from which it follows that f*(ei6<>) =e'x.

In §2 we shall prove the analogue of this extension of Hossjer's

theorem for functions of class (B). In §3 we shall discuss another class

of meromorphic functions which has been studied recently by O.
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Lehto [6; 7; 8] and M. Tsuji [l4J: Let/(z) be meromorphic in |z| <1,

and let the values which/(z) assumes in |z| <1 lie in a domain G

whose boundary Y has positive logarithmic capacity, so that by [ll,

p. 213]/(z) is of bounded characteristic in |z| <1. Furthermore, we

shall assume thatf*(ew) belongs to Y for almost all ea on |z| =1. In

what follows, we shall say that a function f(z) with these properties

is of class (L) in |z| <1. Lehto has not only extended the result of

Seidel (Theorem 1) by showing that any value a lying in G which is

omitted by/(z) is a radial limit value of f(z), but also that any a in

G for which the "deficiency"

(1) $(a) = — lim   f    g(f(re«), a)dd
2ir r->i J o

is positive, where g(w, a) is the Green's function of G with singularity

at w = a, is also a radial limit value of f(z).

In §3 we shall extend the result of Hossjer to functions of class (L)

by showing that every point of Y which is arcwise accessible from G

is also a radial limit value of f(z), and that, except for two special

cases, every accessible point of T is a radial limit of f(z) infinitely

often.

2. We shall assume in this section that/(z) is a nontrivial function

of class (B), i.e., that neither/(z) nor l//(z) reduces to a function of

class (A). We shall say that a number a is in the range of f(z) at a

point P of | z| =1 if a is assumed by/(z) in every neighborhood of P.

The number a will be said to be in the range of f(z) in | z| < 1 if it is

assumed infinitely often in |z| <1.

Theorem 2.1fw =f(z) is a nontrivial function of class (B), then either

every point of \w\ =1 which is not in the range of f(z) is an asymptotic

value of f(z), or else f(z) is a p-valent function mapping |z| <1 onto a

simply-connected region consisting of the w-plane slit along an arc of

\w\ =1.

We assume first that the point eA is not in the range of f(z) in

|z| <1, i.e., ea is assumed at most finitely often by/(z) in |z| <1.

Then the function

f(z) + ea
(2) <p(z) = exp-

/(z) - «ft

is analytic in some annulus p< |z| <1, and omits the value 0. Since,

by the Riesz-Nevanlinna Theorem [ll, p. 209], lim infr,i |/(z) — e^]

can be zero on at most a set of measure zero of | z| =1, the function
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<p(z) has the property that its radial limits exist and have modulus 1

almost everywhere on |z| =1.

Now if eiX is not assumed at all in \z\ <1 by/(z), the function <p(z)

in (2) is analytic in \z\ <1 and omits there the value 0. Since

limr,i |</>(rew)| =1 almost everywhere on \z\ =1, it follows from a

theorem of Lohwater [9, p. 248] that either 0 or ■» is an asymptotic

value of <j>(z), so that eiX is an asymptotic value of f(z).

Suppose next that eiX is actually assumed by/(z) in \z\ <1, but by

hypothesis, only finitely often. From a recent extension of Schwarz's

reflection principle by Lohwater [10] we have that a necessary and

sufficient condition that d)(z) can be continued analytically beyond

\z\ =1 is that <p(z) admits neither 0 nor °o as an asymptotic value.

Iff(z) is not analytic at every point of \z\ =1, there exists an arc L,

lying in \z\ <1 and terminating at a point ew* such that, as z-^ew°

along L, <p(z) tends to 0 or <x>, whence/(z)—>e*x along L, so that e<x is

an asymptotic value of f(z).

On the other hand, if <p(z) is analytic on \z\ =1, then/(z) can have

only a finite number of zeros and poles in \z\ <1. If for example,/(z)

has an infinite number of zeros in \z\ <1, let {2*}, k — 1, 2, • • • ,

denote a subsequence of these zeros converging to some point etf«

on |z| =1. On this subsequence we must have Iim*_«, <p(zk) =<p(ew»)

= e_1 which is a contradiction since 4>(z) must be analytic with mod-

ulus 1 everywhere on |z|=l. We consider, finally, the Poisson-

Stieltjes representation [11, p. 201] of w=f(z).

™    olj — z    "    1 — j3*z        r 1   r 2t e" + z "I
(3) /(*) = II T^-II-exp   --frit) + iy\,

y_i  1 — ctjZ t_i   pk — z L2x J 0    e" — z J

where a,- and j8* are the zeros and poles, respectively of f(z), 7 is a

real constant, and (i(t) is of bounded variation on 0^/^27r.

Since the finite products in (3) have modulus 1 everywhere on

\z\ =1, it follows from an argument identical to that used in [9,

p. 246] that n(t) is identically constant, so that/(z) reduces to a quo-

tient of two finite Blaschke products,

™    ctj — z   "    1 — /3*z
(4) f(z) = e* II "-II —-' n> m = L

j=l    1   —   CtjZ *_1     pk —  Z

It cannot happen that the domain G in the w-plane onto which f(z)

maps \z\ <1, is multiply connected, for otherwise/(z) must then as-

sume infinitely often in \z\ <1 every value of G; in particular, e*x

would then be in the range of f(z), a contradiction. It is easy to see

that the simply-connected region G can be mapped onto the circle
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\t\ < 1; if t = F(w), F(0) = 0 is a univalent function which effects such

a map, then the function t = F(f(z)) is analytic of class (A) in |z| <1

with m zeros. Since zero is not an asymptotic value of F(f(z)), it

follows from Theorem 1 that F(f(z)) gives an (m, 1) conformal map-

ping of |z| <lonto|/| <1, so that f(z) in (4) gives an (m, 1) conformal

mapping of |z| <1 onto the region G which consists of the w-plane

slit along an arc of \w\ =1.

We remark that this theorem is similar to a theorem of Lehto [7,

p. 12]; the example given below will show, however, that the class

(B) is not contained in the class (L).

3. Functions of class (L). We assume that values which w=/(z)

assumes in | z| <1 lie in some domain G of the w-plane whose bound-

ary T has positive capacity and f*(em) belongs to Y for almost all

ea on |z| =1.

Theorem 3. Let w=f(z) be of class (L) in \z\ <1 with respect to a

domain G in the w-plane whose boundary Y has positive capacity. Let

/*(etf) belong to Y for almost all e® on \z\ =1. Then every arcwise ac-

cessible point of Y is a radial limit value of f(z).

Let D be that subdomain of G which consists of the values which

f(z) assumes in |z| <1. It has been shown by Lehto [8, p. 97] that

the set 5 of points of G not assumed by/(z) is of capacity zero; obvi-

ously G = DVJS.
From the fact that a set 5 of capacity zero cannot separate the

plane, it is a simple consequence that if a point a£r = Fr (c?) is

arcwise accessible from G it is arcwise accessible from D. Indeed, let

Ibea Jordan arc lying in G and terminating at a. Let k„, n = l, 2, • • • ,

be a set of circular neighborhoods lying in G with centers C„ on L

and radii r. such that as «-—><», C„—>a and r„—>0, and such that

K„nK„+i is not empty for any n. Since k = U"_1 k„ is open and covers

L, there exists also another Jordan arc / disjoint from L, lying in k

and terminating at a. Next pick two sequences of points, l„ belonging

to L(~\D and jn belonging to JC\D, such that as n—»<», ln—*a and

jn—>a. This is clearly possible since 5 is of capacity zero and thus can

contain no arc. Because 5 cannot separate the plane, we are able to

join ln to jn by an arc y„ lying in D and to pick a point wn on yn,

L^Wn^jn. We join i»n to wn+i by an arc Kn: w = w(t), l/(n-\-l)<t

^1/n such that Kn lies in D. Since K = U"_i Kn is an arc: w = w(t),

0<t^l, lying in D and terminating at a, we have that a is arcwise

accessible from D. Let La be an arc in D which terminates at the

point a. Let w = w(f), w(0) =/(0) be a function which maps the circle
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|fI <1 conformally onto the universal covering surface (Rs of D;

since V has positive capacity, such a mapping will exist and will be of

bounded characteristic in |f| <1. If we denote by f = f(w) that

branch of the inverse function of w = w(f) which vanishes at w=f(0),

the function {"= F(z) = f(/(z)) can be continued along any path lying

in \z\ <1, so that, by the monodromy theorem, F(z) will be a single-

valued analytic function of class (A) in \z\ <1.

There exists at least one point ei& on |f| =1 and an arc Lp of

|f | <1 terminating at e* such that the image of L$ under w = w(f)

is La. Since w = w(£) omits at least three values, it follows from an

extension of a theorem of Lindelof [2, p. 96] that the lim^ei0w(£) =a

exists uniformly in the angle F«: | arg (1 — £e~0) | g (7r/2) —5, for any

5>0. Now f = F(z) as a function of class (A) assumes in |z| <1 all

values in |f| <1 except for a set S' of capacity zero [3, p. 111].

Furthermore F'(z) is an analytic function in \z\ <1 and, as such,

possesses at most a countable number of zeros {pn}- If we denote

U„ F(pn) = Qvfe see that it is possible to find a second arc Z,/ termi-

nating at e*0 and lying inside Fa such that Lg does not pass through

any points of the set S'VJQ. It now follows from a well-known method

(see, for example, [l, p. 230]) that a branch of the inverse function

of F(z) may be continued along Lp , so that there exists an arc Lz

lying in | z| <1 and terminating at a point ew' of | z| = 1 such that, as

z—>e**o along Lt, f—►e'" along L/. From the identity w(%)=w(F(z))

—f(z), it follows that /(z)—kk as z—>ew» along Lz, so that by the ex-

tension of Lindelof's theorem mentioned above limr^if(reis<>) =a.

We remark that every arcwise accessible point a of T is a radial

limit of f(z) infinitely often except for two cases: (1) whenever G is

simply-connected and f(z) effects an (m, 1) conformal mapping of

|z| <1 onto G; in this case, each arcwise accessible point a£r is a

radial limit exactly m times; (2) whenever G is doubly-connected and

one boundary component reduces to a point, and f(z) maps |z| <1

conformally onto the covering surface of G; in this case the degenerate

boundary component will be a radial limit finitely often, while all

other arcwise accessible boundary points of G will be radial limits of

f(z) infinitely often. As an example of case (2) we exhibit the function

w = exp ((zn+l)/(zB — 1)) which maps |z| <1 in an (n, 1) conformal

way onto the covering surface of the disc | w \ < 1 punctured at w = 0.

Here the boundary T of G consists of the circumference | w\ = 1 and

the point w — 0; the degenerate boundary component, w = 0, is a

radial limit only at the nth roots of unity, while all points of \w\ =1

are radial limits infinitely often.

We conclude this section by exhibiting a function f(z) which is of
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class (B) but not of class (L); f(z) is the quotient of two Blaschke

products Bi(z)/B2(z), where Bx(z) has an infinite number of zeros

{z„} on the oricycle r = cos 6, (0<6^w/2), and where B2(z) has its

zeros at the conjugate points {zn}. We shall show that /(z)—>0 as

z—->1 along the curve r = cos 6 (0<6^ir/2) and that/(z)—>°o as z—>1

along r = cos 8 (—ir/2^d<0). It will then follow from a theorem of

Lindelof [ll, p. 67] that/(z) must assume all complex values—with

two possible exceptions—infinitely often in the region | z—1/21 < 1/2,

so that the values assumed by/(z) in |z| <1 cannot lie in a domain

whose boundary has positive capacity.

We shall simplify the construction of the Blaschke products by

considering their analogues in the half-plane (R(z)>0; by conformal

mapping, the properties described in the last paragraph will then

hold in the unit circle. We consider the function

Hz) = ft ^
„_1   Z + Z.

where (R(z„)>0; if E»-i &(l/z„) < °o then bi(z) is the analogue of

the Blaschke product in the right half-plane (cf. [13, p. 142]). We

choose the zeros of bi(z) to be the numbers z„ = l-Hw', where 1/2 <t

<1; clearly E"-i (R(l/Zn) converges with this choice of t. The zeros

of bi(z) lie on the line (R(z) = 1, 3(z) >0. We form the function

Hz) = n ^-^>
n=l   Z + Zn

whose zeros are the complex conjugates of the zeros of bi(z), and con-

sider the function

(5) ^^^f--^.
h(z) „_i   Z + Zn    Z — Z„

We show that lim1,,+00 /(1-H;y)=0 and lim,,^_M f(l+iy) = °°. If

z= 1 -\-iy, z„ = 1 -\-ini, each factor

z — zn   z + zn i(y — nf)      2 + i(y + nl)

(6) - ■-=-—-
z+ zn   z — zn      2 + i(y — n')      i(y + «')

is in modulus less than 1 for all n and for y>0, and the modulus of

w—f(l+iy) is less than any one of its factors. Now if «'^y^(« + l)',

we have that

y — n' y — n'     (n + 1)' — nl

I 2 + i(y - n') I 2 2
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and (« + l)' —n'—*0 asw^<». Since lim..^ (i(y+n*)/2+i(y-\-nt)) =1,

it follows that the expression in (6) tends to 0 as y—>+ oo. Similarly,

it can be shown that if y<0 each factor (6) of (5) has modulus

greater than 1 and tends to oo as y—► — oo. Hence /(l +iy) has the

properties described above, and the example is completed.

Added December 6, 1955: After this paper was submitted, Theorem

3 has appeared in a later paper of Lehto, Annales Academiae Scien-

tiarum Fennicae no. 177 (1954) p. 45; the author has heard that a

third proof of this theorem has also been made by M. Ohtsuka. There

has also appeared a paper of K. Noshiro, Proc. Nat. Acad. Sci. U.S.A.

vol. 41 (1955) pp. 398-401 containing generalizations of these results.
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