ON H-SPACES WITH TWO NONTRIVIAL HOMOTOPY GROUPS ${ }^{1}$

ARTHUR H. COPELAND, JR.

Introduction. Although several topologists (e.g. H. Hopf and A. Borel) have found necessary algebraic conditions for a space to admit an H-space structure, very little has been done towards obtaining sufficient conditions. The author believes that the present paper contains essentially the first result in the latter direction.

Let Y be a topological space with $y_{0} \in Y, Y \vee Y=Y \times y_{0} \cup y_{0} \times Y$ $\subset Y \times Y$. If $\phi: Y \bigvee Y \rightarrow Y$ is the map given by $\phi\left(y, y_{0}\right)=\left(y_{0}, y\right)=y$, then the problem of finding an H-space structure on Y may be expressed as the problem of extending ϕ to a map $\phi^{\prime}: Y \times Y \rightarrow Y$. It is found that if Y is a 1 -connected, locally finite CW-complex [3], the obstructions to extending ϕ may be expressed in terms of Postnikov invariants [4] and partial extensions of ϕ. If Y has only two nonzero homotopy groups then there is at most one nontrivial obstruction. This will be zero if and only if the Eilenberg-MacLane k-invariant of Y is primitive.

The relation between the existence of an H-structure and the vanishing of the J. H. C. Whitehead bracket products is investigated. This leads to a description of the lowest-dimensional bracket products on spaces whose first two nontrivial homotopy groups are in dimensions n and $2 n-1(n>1)$.

1. This section presents much of the notation to be used, some discussion preliminary to the main result of the paper and an example of a space which is not an H-space, and yet has trivial bracket products.

If $f_{i}: X_{i} \rightarrow Y_{i}(i=1,2)$ are maps then the map $f_{1} \times f_{2}: X_{1} \times X_{2}$ $\rightarrow Y_{1} \times Y_{2}$ is defined by $f_{1} \times f_{2}\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$ for $x_{i} \in X_{i}$. If $g_{1}: Y_{1} \rightarrow Z_{1}$, then $g_{1} \circ f_{1}: X_{1} \rightarrow Z_{1}$ is the map given by $g_{1} \circ f_{1}(x)=g_{1}\left(f_{1}(x)\right)$ for $x \in X, I=[0,1]$ is the closed unit interval; $I^{m}=I \times \cdots \times I$ (m-factors) is the unit m-cube; \dot{I}^{m} is the usual boundary set of I^{m}. The discussion is restricted to locally finite CW-complexes, for if Y is a locally finite CW-complex then $Y \times Y$ is a CW-complex whose (closed) m-cells may be taken to be of the form $E^{m}=E^{p} \times E^{q}(p+q$ $=m ; E^{p}, E^{q}$ are, respectively, p-, and q-cells of Y) [6]. The characteristic map of E^{m} is $e^{m}=e^{p} \times e^{q} ; I^{m} \rightarrow E^{m}$ where e^{p}, e^{q} are character-

[^0]istic maps of E^{p}, E^{q} and I^{m} is identified with $I^{p} \times I^{q}$. Given cochains $c^{p} \in C^{p}\left(Y ; G_{1}\right), c^{q} \in C^{q}\left(Y ; G_{2}\right)$ and a pairing $\xi: G_{1} \otimes G_{2} \rightarrow G$ we form a cochain $c^{p} \times c^{q} \in C^{p+q}(Y \times Y ; G)$ whose value on a cell $E^{p} \times E^{q}$ is $c^{p} \times c^{q}\left(E^{p} \times E^{q}\right)=\xi\left(c^{p}\left(E^{p}\right) \otimes c^{q}\left(E^{q}\right)\right)$ and which is zero elsewhere. If c^{p}, c^{q} are cocycles then $c^{p} \times c^{q}$ is, and the corresponding cohomology classes are $\left[c^{p}\right],\left[c^{q}\right],\left[c^{p}\right] \times\left[c^{q}\right]=\left[c^{p} \times c^{q}\right]$. If X is a CW-complex, its m-skeleton will be designated by X^{m}. The map $\phi: Y \bigvee Y \rightarrow Y$, presented in the introduction, will be called the folding map of Y. If $f: A \rightarrow B$ is a map, its homotopy class will be designated by $\{f\}$.

If the folding map has been extended over $Y \bigvee Y \cup(Y \times Y)^{m}$ then the obstruction to extending over the $(m+1)$-skeleton is in the cohomology group $H^{m+1}\left(Y \times Y, Y \bigvee Y ; \pi_{m}(Y)\right)$.

In case Y is $(n-1)$-connected, $(Y \times Y, Y \vee Y)$ will be $(2 n-1)$ connected.

Proposition 1. The obstruction in dimension $2 n$ to extending the folding map is

$$
d^{n} \times d^{n} \in H^{2 n}\left(Y \times Y, Y \vee Y ; \pi_{2 n-1}(Y)\right)
$$

where $d^{n} \in H^{n}\left(Y, y ; \pi_{n}(Y)\right)$ is the characteristic class for Y and the pairing of $\pi_{n}(Y) \otimes \pi_{n}(Y)$ into $\pi_{2 n-1}(Y)$ is the J. H. C. Whitehead bracket product.

Proof. We may replace Y by a space whose $(n-1)$-skeleton is a point (see §3). Then the ($2 n-1$)-skeleton of $Y \times Y$ is contained in $Y \bigvee Y$ so that the obstruction cocycle to extending ϕ is given by:

$$
c^{2 n}\left(E_{1}^{n} \times E_{2}^{n}\right)=\left\{\phi \circ\left(e_{1}^{n} \times e_{2}^{n}\right) \mid I^{2 n}\right\}
$$

where E_{1}^{n}, E_{2}^{n} are cells of Y and e_{1}^{n}, e_{2}^{n} their characteristic maps. Note that

$$
\left\{\phi \circ\left(e_{1}^{n} \times e_{2}^{n}\right) \mid \dot{I}^{2 n}\right\}=\left[\left\{\begin{array}{c}
n \\
e_{1}
\end{array}\right\},\left\{\begin{array}{c}
n \\
e_{2}
\end{array}\right\}\right]
$$

with $\left\{e_{1}^{n}\right\},\left\{e_{2}^{n}\right\}$ regarded as elements of $\pi_{n}(Y)$ [1]. But d_{n} is the class of the cocycle c^{n} given by

$$
c^{n}\left(E^{n}\right)=\left\{e^{n}\right\}
$$

Thus $c^{2 n}=c^{n} \times c^{n}$.
Corollary 2. $c^{2 n}=0$ if and only if $[\alpha, \beta]=0$ for $\alpha, \beta \in \pi_{n}(Y)$.
Proof. Suppose $c^{2 n}=0$. Since $H_{n}(Y) \approx \pi_{n}(Y)$ the characteristic maps of n-cells generate $\pi_{n}(Y)$. Thus $[\alpha, \beta]=0$ when α, β are in this set of generators; hence $\left[\alpha^{\prime}, \beta^{\prime}\right]=0$ for all $\alpha^{\prime}, \beta^{\prime} \in \pi_{n}(Y)$. The converse is trivial.

On the other hand, if Y is an H-space then all bracket products vanish. This raises the question: if Y is a CW-complex and $\left[\pi_{p}(Y)\right.$, $\left.\pi_{q}(Y)\right]=0$ for $p, q>0$, is Y an H-space? The answer is negative, and we present a counter-example:

We construct a CW-complex, K, by specifying its m-skeleta, K^{m}. Let $n>2$ be an integer and p an odd prime. The $2 n$-skeleton of K is taken to be the $2 n$-skeleton of a CW-complex which is an EilenbergMacLane space of type $\left(Z_{p}, n\right)$, where Z_{p} is the integers $\bmod p$. There are no cells in dimension $2 n+1\left(K^{2 n+1}=K^{2 n}\right)$ and in higher dimensions, cells are appended so that $\pi_{i}(K)=0$ for $i>2 n$ [7].

This creates a space whose homotopy groups are trivial except in dimensions n and $2 n$. Thus all bracket products vanish. Also note that $H^{n}\left(K ; Z_{p}\right) \approx H^{n+1}\left(K ; Z_{p}\right) \approx Z_{p}$ since the cohomology groups in these dimensions are those of a space of type (Z_{p}, n). The ($2 n+1$)cohomology group is zero, since there are no ($2 n+1$)-cells.

Now, K is not an H-space, for if it were, its cohomology ring would be a Hopf algebra and the cup product of an element of $H^{n}\left(K ; Z_{p}\right)$ with an element of $H^{n+1}\left(K ; Z_{p}\right)$ would be nonzero, contradicting $H^{2 n+1}\left(K ; Z_{p}\right)=0$ [2].
2. The main result. Let Y be a 1 -connected CW-complex, and suppose that the folding map has been extended to $\phi: Y \bigvee Y \cup(Y \times Y)^{m}$ $\rightarrow Y$. Let X be a CW-complex consisting of Y united with i-cells, E^{i}, ($i>m$) such that $\pi_{i}(X)=0$ for $i \geqq m$. Note that below dimension m, the inclusion map induces isomorphisms of the homotopy groups of X and Y.

Proposition 3. X is an H-space.

Proof. The m-skeleta of X and Y are the same, so that $(X \times X)^{m}$ $=(Y \times Y)^{m}$. Thus ϕ provides an extension $\psi^{\prime}: X \bigvee X \cup(X \times X)^{m} \rightarrow X$. But $H^{i+1}\left(X \times X, X \bigvee X ; \pi_{i}(X)\right)=0$ for $i>m$, whence all obstructions to extending ψ^{\prime} vanish. One such extension, let us call it $\psi: X \times X \rightarrow X$, is chosen for the structure map of X.

The condition $\pi_{i}(X)=0$ for $i \geqq m$ also implies that any two extensions of ψ^{\prime} will be homotopic.

In the diagram below, $i_{1}^{*}, \cdots, i_{5}^{*}$ are homomorphisms induced by the appropriate inclusion maps: ψ^{*}, ψ_{1}^{*} are induced by ψ. The coefficient group for each of these cohomology groups is $\pi_{m}(Y)$. This symbol has been omitted to save space. It is well known that i_{1}^{*} sends $H^{m+1}\left(X \times X, X \bigvee X ; \pi_{m}(Y)\right)$ isomorphically onto a direct summand of $H^{m+1}\left(X \times X ; \pi_{m}(Y)\right)$. This direct sum decomposition induces the homomorphism ρ. The composition $\rho \circ i_{1}^{*}$ is the identity automorphism of $H^{m+1}\left(X \times X, X \bigvee X ; \pi_{m}(Y)\right)$, and the kernel of ρ is essen-
tially $H^{m+1}\left(X \vee X ; \pi_{m}(Y)\right)$. The diagram is commutative.

Let $k^{\prime} \in H^{m+1}\left(X, Y ; \pi_{m}(Y)\right)$ be the first obstruction to retracting X onto Y, and $k=i_{5}^{*} k^{\prime} \in H^{m+1}\left(X ; \pi_{m}(Y)\right)$. The maps $p_{1}, p_{2}: X \times X \rightarrow X$ are the projections $p_{i}\left(x_{1}, x_{2}\right)=x_{i}$ for $x_{i} \in X, i=1,2$.

Proposition 4. Let $\gamma \in H^{m+1}\left(Y \times Y, Y \bigvee Y ; \pi_{m}(Y)\right)$ be the class of the obstruction to extending ϕ to $(Y \times Y)^{m+1} \cup Y \vee Y$. Then

$$
i_{2}^{*} \rho\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k=\gamma .
$$

Proof. The cohomology class $\psi_{1}^{*} k^{\prime}$ is the first obstruction to extending $\left(\psi \mid Y \bigvee Y \bigvee(X \times X)^{m}\right)=\left(\phi \mid Y \bigvee Y \bigcup(Y \times Y)^{m}\right)$ to $X \times X$ and hence $i_{4}^{*} \psi_{1}^{*} k^{\prime}=\gamma$. On the other hand, $i_{3}^{*} \psi_{1}^{*} k^{\prime}=\psi^{*} i_{5}^{*} k^{\prime}=\psi^{*} k$, and so $i_{2}^{*} \rho \psi^{*} k=i_{2}^{*} \rho i_{3}^{*} \psi_{1}^{*} k^{\prime}=i_{4}^{*} \psi_{1}^{*} k^{\prime}=\gamma$. Finally, $\rho \circ\left(p_{1}^{*}+p_{2}^{*}\right)$ is the trivial homomorphism, whence $i_{2}^{*} \rho\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k=i_{2}^{*} \rho \psi^{*} k=\gamma$.

If W is an H-space with $\psi, p_{1}, p_{2}: W \times W \rightarrow W$ the structure map and the two projections respectively, then a cohomology class, u, is called primitive whenever $\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) u=0$.

Theorem 5. The obstruction class, γ, vanishes if and only if k is primitive.

Proof. We already have $i_{2}^{*} \rho\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k=\gamma$ so that if k is primitive, $\gamma=0$. To obtain the converse, we first note that i_{2}^{*} is an isomorphism since the inclusion map of Y in X induces isomorphisms $H^{i}(X) \approx H^{i}(Y)$ for $i \leqq m$. But the image of $\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k$ in H^{m+1} $\cdot\left(X \vee X ; \pi_{m}(Y)\right)$ is zero, since $(\psi \mid X \vee X)^{*}=\left(p_{1} \mid X \vee X\right)^{*}+\left(p_{2} \mid X\right.$ $\vee X)^{*}$. Thus $\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k \in i_{1}^{*} H^{m+1}\left(X \times X, X \vee X ; \pi_{m}(Y)\right)$ from which it follows that $\rho\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k=0$ implies $\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k=0$. This completes the proof.

Note that k is essentially the ($m+1$)-Postnikov invariant of Y. The theorem fails to provide a decisive victory over the problem of characterizing H-spaces which are CW-complexes, inasmuch as it depends upon choosing a particular extension, ψ, in each dimension. However, for sufficiently simple spaces the problem can be solved:

Theorem 6. Suppose Y is a $C W$-complex which has only two nontrivial homotopy groups, $\pi_{n}(Y)$ and $\pi_{m}(Y)$, with $1<n<m$. Then Y is
an H-space if and only if the Eilenberg-MacLane k-invariant of Y is primitive.

Proof. The only nontrivial obstruction to extending the folding map is in $H^{m+1}\left(Y \times Y, Y \vee Y ; \pi_{m}(Y)\right)$. Thus the space X is of type $\left(\pi_{n}(Y), n\right)$ and k may be identified with the k-invariant, $k_{n}^{m+1}(Y)$. The result now follows from Theorem 4.

It may now be seen that the example of $\S 1$ was obtained by constructing a space with nonprimitive k-invariant.

In $\S 3$ it is shown that given abelian groups π_{n}, π_{m} and an element $k \in H^{m+1}\left(\pi_{n}, n ; \pi_{m}\right)$, there is a space Y (which may be taken to be a CW-complex) such that $\pi_{i}(Y)=0$ for $i \neq n, m, \pi_{n}(Y)=\pi_{n}, \pi_{m}(Y)=\pi_{m}$ and $k_{n}^{m+1}(Y)=k$. Any two such CW-complexes are of the same homotopy type. This observation and Theorem 5 give a classification of CW-complexes which admit H-structures and have only two nonvanishing homotopy groups.

Theorem 5 and Proposition 1 (\$1) may be combined to yield a result about the Whitehead bracket product. Suppose $\pi_{i}(Y)=0$ for $0 \leqq i<n$ and $n<i<2 n-1$. Let $\pi_{n}=\pi_{n}(Y)$ and $\pi_{2 n-1}=\pi_{2 n-1}(Y)$; $\pi_{n} \otimes \pi_{n}, \pi_{n} \oplus \pi_{n}$ designate respectively the tensor product and the direct sum of π_{n} with itself. Three homomorphisms, $\bar{\psi}, \bar{p}_{1}, \bar{p}_{2}: \pi_{n} \oplus \pi_{n}$ $\rightarrow \pi_{n}$ are defined by $\bar{\psi}(\alpha, \beta)=\alpha+\beta, p_{1}(\alpha, \beta)=\alpha, p_{2}(\alpha, \beta)=\beta$ for α, $\beta \in \pi_{n}$.

Proposition 7. The cohomology class $\left(\Psi^{*}-\bar{p}_{1}^{*}-\bar{p}_{2}^{*}\right) k_{n}^{2 n}(Y) \in H^{2 n}\left(\pi_{n}\right.$ $\oplus \pi_{n}, n ; \pi_{2 n-1}$) defines a homomorphism $W: \pi_{n} \otimes \pi_{n} \rightarrow \pi_{2 n-1}$ such that $W(\alpha \otimes \beta)=[\alpha, \beta]$ for $\alpha, \beta \in \pi_{n}$.

Proof. Consider the diagram,

$$
\begin{array}{r}
\left.\operatorname{Hom}\left\{\pi_{n} \otimes \pi_{n} ; \pi_{2 n-1}\right\}\right\} \stackrel{\theta_{1}}{\leftarrow} H^{2 n}\left(\pi_{n} \oplus \pi_{n}, n ; \pi_{2 n-1}\right) \\
\uparrow \begin{array}{cc}
\\
(\eta \otimes \eta)^{*} & H^{2 n}\left(X \times X ; \pi_{2 n-1}^{*}\right) \\
& \uparrow i_{1}^{*} \circ\left(i_{2}^{*}\right)^{-1}
\end{array} \\
\operatorname{Hom}\left\{H_{n}(Y) \otimes H_{n}(Y) ; \pi_{2 n-1}\right\} \underset{\theta_{2}}{\leftarrow} H^{2 n}\left(Y \times Y, Y \vee Y ; \pi_{2 n-1}\right)
\end{array}
$$

The space X is of type (π_{n}, n), so that the natural chain maps from the cell complex of X into the singular complex of X and thence into $K\left(\pi_{n}, n\right)$ induces a chain map, κ, from the cell complex of $X \times X$ into $K\left(\pi_{n} \oplus \pi_{n}, n\right)$. This last induces the isomorphism κ^{*}. The homomorphisms ψ, p_{1}, p_{2} are algebraic analogues of ψ, p_{1}, p_{2}. In particular, $\kappa^{*}\left(\bar{\psi}^{*}-p_{1}^{*}-p_{2}^{*}\right) k_{n}^{2 n}(Y)=\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k$. The homomorphisms i_{1}^{*}, i_{2}^{*}
are as defined in Theorem $5 ; \eta: \pi_{n} \rightarrow H_{n}(Y)$ is the Hurewicz isomorphism and $(\eta \otimes \eta)^{*}$ is the induced isomorphism of the Hom groups. The Kunneth formula yields the homomorphisms $\theta_{1}, \theta_{2} ; \theta_{2}$ is an isomorphism. Note that $\theta_{1} \circ\left(\kappa^{*}\right)^{-1} \circ i_{1}^{*} \circ\left(i_{2}^{*}\right)^{-1} \circ \theta_{2}^{-1} \circ\left((\eta \otimes \eta)^{*}\right)^{-1}$ is the identity automorphism of Hom $\left\{\pi_{n} \otimes \pi_{n} ; \pi_{2 n-1}\right\}$ onto itself.

Recall that $d_{n} \in H^{n}\left(Y ; \pi_{n}\right)$ is the basic cohomology class of Y. Thus the image of d_{n} in Hom $\left\{H_{n}(Y) ; \pi_{n}\right\}$ is η^{-1} and $\theta_{1}\left(W \circ\left(\eta^{-1}\right.\right.$ $\left.\left.\otimes \eta^{-1}\right)\right)=d_{n} \times d_{n}=\gamma$. We now have,

$$
\begin{aligned}
W & =\theta_{1} \circ\left(\kappa^{*}\right)^{-1} \circ i_{1}^{*} \circ\left(i_{2}^{*}\right)^{-1} \circ \theta_{2}^{-1} \circ\left((\eta \otimes \eta)^{*}\right)^{-1}(W) \\
& =\theta_{1} \circ\left(\kappa^{*}\right)^{-1} \circ i_{1}^{*} \circ\left(i_{2}^{*}\right)^{-1}(\gamma) \\
& =\theta_{1} \circ\left(\bar{\psi}^{*}-\bar{p}_{1}^{*}-\bar{p}_{2}^{*}\right) k_{n}^{2 n}(Y) .
\end{aligned}
$$

Proposition 8. Suppose Y is a $C W$-complex with only two nonvanishing homotopy groups, $\pi_{n}=\pi_{n}(Y)$ and $\pi_{m}=\pi_{m}(Y)$. Then there is a space of loops Ω having the same homotopy groups and k-invariant as Y if and only if $k_{n}^{m+1}(Y)$ is the suspension of an element

$$
k^{m+2} \in H^{m+2}\left(\pi_{n}, n+1 ; \pi_{m}\right) .
$$

Proof. Let S be the suspension homomorphism and suppose $k_{n}^{m+1}(Y)=S k^{m+2}$. Let W be a space such that $\pi_{i}(W)=0(i \neq n+1$, $m+1), \pi_{n+1}(W)=\pi_{n}, \pi_{m+1}(W)=\pi_{m}, k_{n+1}^{m+2}(W)=k^{m+2}$. Then $\Omega=$ the space of loops on W is the desired space. The converse is immediate.
J. C. Moore has demonstrated (unpublished) that if $\alpha \in H^{m+1}(\pi, n$; $G)$ is primitive then α is the suspension of an element of $H^{m+2}(\pi, n+1$; $G)$. Thus all H-spaces of the type under discussion are essentially spaces of loops.
3. Let X be a given 0 -connected space, $x_{0} \in X$. We construct a CW-complex, $K(X)$, whose 0 -skeleton is a point $k_{0} \in K(X)$, and a map $f(X): K(X) \rightarrow X$ such that $f(X)$ induces isomorphisms $f(X)_{\sharp}$: $\pi_{i}\left(K(X), k_{0}\right) \rightarrow \pi_{i}\left(X, x_{0}\right)$ for $i \geqq 0$. This is done by specifying the n skeleta K^{n} of $K(X)$ and maps $f_{n}: K^{n} \rightarrow X$.

The 0 -skeleton consists of one cell $E^{0}=k_{0}$. Suppose K^{n} and $f_{n}: K^{n}$ $\rightarrow X$ are constructed such that the induced homomorphism

$$
f_{n_{\sharp}}^{(i)}: \pi_{i}\left(K^{n}, k_{0}\right) \rightarrow \pi_{i}\left(X, x_{0}\right)
$$

is an isomorphism for $i<n$ and onto for $i=n$. Let A_{n+1} be the kernel of $f_{n \sharp}^{(n)}$ and $B_{n+1} \subset \pi_{n+1}\left(X, x_{0}\right)$ a set of generators of $\pi_{n+1}\left(X, x_{0}\right)$. Append cells $E_{\alpha}^{n+1}\left(\alpha \in A_{n+1}\right)$, so that if e_{α}^{n+1} is the characteristic map of E_{α}^{n+1} then $\left(e_{\alpha}^{n+1} \mid \dot{I}^{n+1}\right) \in \alpha$, and cells $E_{\beta}^{n+1}\left(\beta \in B_{n+1}\right)$ with $e_{\beta}^{n+1}\left(\dot{I}^{n+1}\right)$ $=k_{0}$. The map f_{n} can be extended over cells $E_{\alpha}^{n+1}\left(\alpha \in A_{n+1}\right)$ since
$f_{n} \mid e_{\alpha}^{n+1}\left(\dot{I}^{n+1}\right)$ is null-homotopic; $f_{n+1} \mid E_{\beta}^{n+1}\left(\beta \in B_{n+1}\right)$ is determined by $f_{n+1} \circ e_{\beta}^{n+1} \in \beta$. Then

$$
f_{n+1}^{(i)}: \pi_{i}\left(K^{n+1}, k_{0}\right) \rightarrow \pi_{i}\left(X, x_{0}\right)
$$

is an isomorphism for $i<n+1$ and onto for $i=n+1$.
The complex $K(X)$ is $\cup_{n=0}^{\infty} K^{n}$, with the topology: C is closed in $K(X)$ if and only if $C \cap K^{n}$ is closed in K^{n} for each n. The map $f(X): K(X) \rightarrow X$ is given by $\left(f(X) \mid K^{n}\right)=f_{n}$. Note that this is a modification of a construction by J. H. C. Whitehead [7].

Proposition 9. If π_{n}, π_{m} are abelian groups $(n<m)$ and $k \in H^{m+1}\left(\pi_{n}\right.$, $n ; \pi_{m}$) then there is a $C W$-complex K such that $\pi_{i}(K)=0$ for $i \neq n, m$, $\pi_{n}(K)=\pi_{n}, \pi_{m}(K)=\pi_{m}, k^{m}=k$.

Proof. Let E be the space of paths in the Eilenberg-MacLane space $K\left(\pi_{m}, m+1\right)$ terminating in some point $y_{0} \in K\left(\pi_{m}, m+1\right)$ with fibre map $p_{1}: E \rightarrow K\left(\pi_{m}, m+1\right)$ and fibre $K\left(\pi_{m}, m\right)$. If $d \in H^{m+1}\left(\pi_{m}\right.$, $\left.m+1 ; \pi_{m}\right)$ is the basic cohomology class, then there is a map $f: K\left(\pi_{n}\right.$, $n) \rightarrow K\left(\pi_{m}, m+1\right)$ such that $f^{*}(d)=k \in H^{m+1}\left(\pi_{n}, n ; \pi_{m}\right)$. Note that $K\left(\pi_{m}, m+1\right), K\left(\pi_{n}, n\right)$ may be chosen to be CW-complexes and f cellular. The map f induces a space X and maps p_{2}, F such that the diagram

$$
\begin{array}{cc}
X \xrightarrow{F} E \\
p_{2} \downarrow & \downarrow p_{1} \\
K\left(\pi_{n}, n\right) \rightarrow & K\left(\pi_{m}, m+1\right)
\end{array}
$$

is commutative and X is a fibre space over $K\left(\pi_{n}, n\right)$ with fibre map p_{2} and fibre $K\left(\pi_{m}, m\right)$. From the homotopy sequence of the fibre map p_{2} we see that $\pi_{i}(X)=0$ for $i \neq n, m, \pi_{n}(X)=\pi_{n}, \pi_{m}(X)=\pi_{m}$.

We know that there is a map, j, of the m-skeleton of $K\left(\pi_{n}, n\right)$ into X such that $p_{2} \circ j$ is the identity, and that the obstruction to extending j is k_{n}^{m+1}. If E^{m+1} is an $(m+1)$-cell of $K\left(\pi_{n}, n\right)$ then its characteristic map e^{m+1} (considered as a null-homotopy of $\left(e^{m+1} \mid \dot{I}^{m+1}\right)$) can be lifted to a map $g: \dot{I}^{m+1} \times I \rightarrow X$ with $\left(g \mid \dot{I}^{m+1} \times 0\right)=j \circ\left(e^{m+1} \mid \dot{I}^{m+1}\right)$ and $g^{\prime}=\left(g \mid \dot{I}^{m+1} \times 1\right): \dot{I}^{m+1} \rightarrow K\left(\pi_{m}, m\right)$. If ∂ is the boundary homomorphism of the homotopy sequence of p_{1} and $F^{\prime}=\left(F \mid K\left(\pi_{m}, m\right)\right.$) then

$$
\partial^{-1} F^{1}\left\{g^{\prime}\right\}=\left\{f \circ e^{m+1}\right\} \in \pi_{m+1}\left(K\left(\pi_{m}, m+1\right)\right)
$$

But $f^{*} d\left(E^{m+1}\right)=\left\{f \circ e^{m+1}\right\}$. Thus there is an isomorphism of $H^{m+1}\left(\pi_{n}, n ; \pi_{m}(X)\right)$ onto $H^{m+1}\left(\pi_{n}, n ; \pi_{m+1}\left(K\left(\pi_{m}, m+1\right)\right)\right)$ carrying
k_{n}^{m+1} into $k=f^{*} d$. The desired CW-complex is then obtained as in the beginning of this section.

This proof is the obvious generalization of one given by Thom [5].

Bibliography

1. A. L. Blakers and W. S. Massey, Products in homotopy theory, Ann. of Math. vol. 58 (1954) pp. 295-324.
2. A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groups de Lie compacts, Ann. of Math. vol. 57 (1953) pp. 115-207.
3. P. J. Hilton, $A n$ introduction to homotopy theory, Cambridge University Press, no. 43, 1953.
4. M. M. Postnikov, On the homotopy type of polyhedra, Doklady Akademii Nauk SSSR. (N.S.) vol. 76 (1951) pp. 789-791.
5. R. Thom, Quelques propriêtés globales des variétés différentiables, Comment. Math. Helv. vol. 28 (1954) pp. 17-86.
6. J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 213-245.
7. - On the realizability of homotopy groups, Ann. of Math. vol. 50 (1949) pp. 261-263.

Massachusetts Institute of Technology

[^0]: Received by the editors May 21, 1955, and in revised form, October 7, 1955 and January 24, 1956.
 ${ }^{1}$ This is part of a doctoral dissertation written under the direction of G. W. Whitehead, at the Massachussetts Institute of Technology.

