ON H-SPACES WITH TWO NONTRIVIAL
HOMOTOPY GROUPS!

ARTHUR H. COPELAND, JR.

Introduction. Although several topologists (e.g. H. Hopf and A.
Borel) have found necessary algebraic conditions for a space to admit
an H-space structure, very little has been done towards obtaining
sufficient conditions. The author believes that the present paper con-
tains essentially the first result in the latter direction.

Let Y be a topological space with y,&V, Y\/ V=V Xy Uy, XYV
CYXY. If ¢: Y/ Y—>Y is the map given by ¢(y, yo) = (o, ¥) =,
then the problem of finding an H-space structure on ¥ may be ex-
pressed as the problem of extending ¢ to a map ¢ : Y X YV—V. Itis
found that if ¥ is a 1-connected, locally finite CW-complex [3], the
obstructions to extending ¢ may be expressed in terms of Postnikov
invariants [4] and partial extensions of ¢. If ¥ has only two nonzero
homotopy groups then there is at most one nontrivial obstruction.
This will be zero if and only if the Eilenberg-MacLane k-invariant of
Y is primitive.

The relation between the existence of an H-structure and the van-
ishing of the J. H. C. Whitehead bracket products is investigated.
This leads to a description of the lowest-dimensional bracket prod-
ucts on spaces whose first two nontrivial homotopy groups are in
dimensions # and 2n—1 (n>1).

1. This section presents much of the notation to be used, some dis-
cussion preliminary to the main result of the paper and an example of
a space which is not an H-space, and yet has trivial bracket products.

If fi:X,—Y; (=1, 2) are maps then the map fiX/f2: X1 XX,
— V1 X Y, is defined by fiXfa(x1, x2) = (f1(x1), fo(x2)) for x,&€X,. If
g1: Y1—2Z,, then g1 0 f1i: X1—Z, is the map given by g1 o fi(x) = g1(f1(x))
for x€X, I=[0, 1] is the closed unit interval; I"=1X - - - XI
(m-factors) is the unit m-cube; I™ is the usual boundary set of I™.
The discussion is restricted to locally finite CW-complexes, for if ¥
is a locally finite CW-complex then Y X ¥V is a CW-complex whose
(closed) m-cells may be taken to be of the form Em=FE»XE? (p+q
=m; E», E? are, respectively, p-, and g-cells of V) [6]. The char-
acteristic map of E™ is e»=¢? Xe?; I"—E™ where ¢?, ¢? are character-
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istic maps of E?, E< and I™ is identified with I? X I Given cochains
cPECP(Y; Gy), 1€ CYY; Gy) and a pairing £:G1®G.—G we form a
cochain ¢?Xc?&Crt1(YXY; G) whose value on a cell E»?XE"? is
c®Xc1(EPXE?) =£(c?(E?) @c?(EY)) and which is zero elsewhere. If
¢?, ¢? are cocycles then ¢?Xc¢1? is, and the corresponding cohomology
classes are [c?], [c2], [c?]X [c?]=[c?Xc?]. If X is a CW-complex,
its m-skeleton will be designated by X™. The map ¢: YV V-7,
presented in the introduction, will be called the folding map of Y. If
f:A—B is a map, its homotopy class will be designated by {f}

If the folding map has been extended over Y/ Y\ U(YV X Y)™ then
the obstruction to extending over the (m+1)-skeleton is in the co-
homology group H™'{(YX Y, Y\ V; m.(Y)).

In case YV is (r—1)-connected, (YXY, Y\VY) will be (2n—1)-
connected.

ProrosiTiON 1. The obstruction in dimension 2n to extending the
folding map is

d*Xd € H™(YV XY,V \VY; r2_1(Y))

where d"CH (Y, y; wa(Y)) is the characteristic class for Y and the
pairing of (V) Qm.(Y) into (YY) is the J. H. C. Whitehead
bracket product.

Proor. We may replace Y by a space whose (z—1)-skeleton is a
point (see §3). Then the (272 —1)-skeleton of ¥ X Y is contained in
Y/ Y so that the obstruction cocycle to extending ¢ is given by:

2n n n n *2n
c (Elez) = {¢0(61X€;)|I }

where Ef, Ej are cells of Y and e}, €} their characteristic maps. Note that

{po@x e |1} = [{a}, {&}]

with {e7}, {3} regarded as elements of m,(¥) [1]. But d, is the class
of the cocycle ¢” given by

c(E") = {er}.
Thus ¢*=c¢"Xc.
COROLLARY 2. ¢>*=0 if and only if [a, B8] =0 for a, BET.(Y).

Proor. Suppose ¢*»=0. Since H,(Y)=w,(Y) the characteristic
maps of n-cells generate 7,(¥). Thus [, 8] =0 when «, (8 are in this
set of generators; hence [o/, 8] =0 for all &/, B’ Em,(Y). The converse
is trivial.
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On the other hand, if ¥ is an H-space then all bracket products
vanish. This raises the question: if ¥ is a CW-complex and [r,(Y),
7(¥Y)]=0 for p, ¢>0, is ¥ an H-space? The answer is negative, and
we present a counter-example:

We construct a CW-complex, K, by specifying its m-skeleta, K™.
Let n>2 be an integer and p an odd prime. The 2#-skeleton of K is
taken to be the 2n-skeleton of a CW-complex which is an Eilenberg-
MacLane space of type (Z,, ), where Z, is the integers mod p. There
are no cells in dimension 2n+1 (K?**+1=K?*) and in higher dimen-
sions, cells are appended so that m;(K) =0 for ¢>2# [7].

This creates a space whose homotopy groups are trivial except in
dimensions # and 2#. Thus all bracket products vanish. Also note
that H*(K; Z,)~H"t\(K; Z,)=Z, since the cohomology groups in
these dimensions are those of a space of type (Z;, #). The (2n41)-
cohomology group is zero, since there are no (2n4-1)-cells.

Now, K is not an H-space, for if it were, its cohomology ring would
be a Hopf algebra and the cup product of an element of H*(K; Z,)
with an element of H*t(K; Z,) would be nonzero, contradicting
H»\(K; Z,)=0 [2].

2. The main result. Let ¥ be a 1-connected CW-complex, and
suppose that the folding map has been extended to¢: Y\ YU (Y X ¥)™
— Y. Let X be a CW-complex consisting of ¥ united with i-cells, E?,
(¢>m) such that m,(X) =0 for 2=m. Note that below dimension ,
the inclusion map induces isomorphisms of the homotopy groups of
X and Y.

ProposITION 3. X is an H-space.

Proor. The m-skeleta of X and Y are the same, so that (X XX)™
= (Y X Y)™ Thus ¢ provides an extension ¢": X VX U(X XX)"—X.
But H+(X XX, X\ X; (X)) =0 for >m, whence all obstructions
to extending ¥/ vanish. One such extension, let us call it Y : X X X—X,
is chosen for the structure map of X.

The condition m,(X) =0 for ¢=m also implies that any two exten-
sions of Y’ will be homotopic.

In the diagram below, i, - - -, 45 are homomorphisms induced by
the appropriate inclusion maps: ¢*, Y7 are induced by ¢. The coeffi-
cient group for each of these cohomology groups is 7,(Y). This sym-
bol has been omitted to save space. It is well known that 47 sends
H»(X XX, XVVX; m.(Y)) isomorphically onto a direct summand
of H" (X XX ; m.(Y)). This direct sum decomposition induces the
homomorphism p. The composition p 04} is the identity automor-
phism of H™ (XXX, X\V/X; mn(Y)), and the kernel of p is essen-
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tially H"+'(X\/ X ; m.(Y)). The diagram is commutative.
H (X + X, XV X) *

i 12
p
H™(X X X) g H"(X XX, YVY) pH"(Y XY, Y V7Y)
) 1
o R ‘

H™(X) 4 H™(X, V)
s
Let ¥’ €H™*(X, Y; mu(Y)) be the first obstruction to retracting
X onto ¥, and k=ijk' CH™ (X ; m,(Y)). The maps py, p2: X XX —X
are the projections p;(x1, x2) =x, for x,€EX, 1=1, 2.

PrOPOSITION 4. Let yYEH™ (Y XY, YN Y; m.(Y)) be the class of
the obstruction to extending ¢ to (Y X V)"t UV Y. Then

& o(* — 1 — Pk = v.

Proor. The cohomology class ¢f&’ is the first obstruction to ex-
tending (¥| YV YU(XXX)™) =(¢| YV YU(YX ¥)") to XXX and
hence i}y =v. On the other hand, i3y*k’ =y**t’ =y*k, and so
iapy*k=1ispisyth' =ifyFk =~. Finally, p o (p¥+p3) is the trivial
homomorphism, whence i3p(Y* —p¥ — pi )k =i py* b =7.

If Wis an H-space with ¢, p1, po2: WX W—W the structure map
and the two projections respectively, then a cohomology class, #, is
called primitive whenever (Y* —pf—p)u=0.

THEOREM 5. The obstruction class, v, vanishes if and only if k is
primaitive.

Proor. We already have i3p(Y*—pF—pH)k=v so that if % is
primitive, ¥ =0. To obtain the converse, we first note that 4; is an
isomorphism since the inclusion map of ¥ in X induces isomorphisms
Hi{(X)=H(Y) for i<m. But the image of (y*—pf—p3)k in Hm+!
“(XVX; mn(Y)) is zero, since (¥|XVX)*=(p:i|XVX)*+(ps| X
VX)* Thus (Y*—pf—pkCirH"+ (XXX, XV X; 7n(Y)) from
which it follows that p(Y* —pf —p3)k=0 implies (Y* —pf—pHk=0.
This completes the proof.

Note that % is essentially the (#m4-1)-Postnikov invariant of Y.
The theorem fails to provide a decisive victory over the problem of
characterizing H-spaces which are CW-complexes, inasmuch as it
depends upon choosing a particular extension, ¥, in each dimension.
However, for sufficiently simple spaces the problem can be solved:

THEOREM 6. Suppose Y is a CW-complex which has only two non-
trivial homotopy groups, wa(Y) and wn(Y), with 1 <n<m. Then Y is
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an H-space if and only if the Eilenberg-MacLane k-invariant of Y is
primitive.

Proor. The only nontrivial obstruction to extending the folding
map is in H"*Y(VY XY, YN/ V; m.(Y)). Thus the space X is of type
(m.(Y), n) and & may be identified with the £-invariant, 7t'(V). The
result now follows from Theorem 4.

It may now be seen that the example of §1 was obtained by con-
structing a space with nonprimitive k-invariant.

In §3 it is shown that given abelian groups m,, 7, and an element
kEH™ (1, n; Tn), there is a space ¥ (which may be taken to be a
CW-complex) such that 7,(Y) =0 for in, m, m,(¥) =7y, 7u(¥) =7mn
and B} (Y) =k. Any two such CW-complexes are of the same homo-
topy type. This observation and Theorem 5 give a classification of
CW-complexes which admit H-structures and have only two non-
vanishing homotopy groups.

Theorem 5 and Proposition 1 (§1) may be combined to yield a
result about the Whitehead bracket product. Suppose 7;(¥) =0 for
0<i<n and n<i<2n—1. Let m,=m,(Y) and ma_1=mn1(Y);
T, @ma, T, D, designate respectively the tensor product and the
direct sum of m, with itself. Three homomorphisms, ¢, 1, p:7. B,
—m, are defined by ¥(a, B) =a+8, pila, B)=a, p(a, B) =8 for «,
BET..

PROPOSITION 7. The cohomology class ($* — by — pn)k2(V) S H™(m,
@B, n; Ton1) defines a homomorphism Wim, @mn—Tau—1 such that

W(a®B) = [a, B] for a, BET,.

Proor. Consider the diagram,

Hom {7r,, ® T 1r2n_1} Zl 0>, @ Tuy #; T2n—1)
L
(n @ n)* H>»(X X X; Tan—1)
1 dro (B

Hom {H,(V) ® Hu(Y); 7201} o H YV XY, Y\ V; mony)
2

The space X is of type (m,, #), so that the natural chain maps from
the cell complex of X into the singular complex of X and thence into
K(m,, n) induces a chain map, , from the cell complex of X XX into
K(w,®m,, n). This last induces the isomorphism «*. The homo-
morphisms §, $1, ps are algebraic analogues of ¥, p1, p2. In particular,
K*P*—pF— PHE(Y) = (* —p¥ —p¥)k. The homomorphisms 4}, 7
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are as defined in Theorem 5; n:7,—H,(Y) is the Hurewicz isomor-
phism and (n®#)* is the induced isomorphism of the Hom groups.
The Kunneth formula yields the homomorphisms 6,, 6.; 68, is an iso-
morphism. Note that 6,0 (k*)~'o 4f o (i)~1o06; o (n®n)*)~! is
the identity automorphism of Hom {,®,; ms._1} onto itself.

Recall that d,€H"(Y; w,) is the basic cohomology class of Y.
Thus the image of d, in Hom {H,.( Y); 7r,,} is 77! and 6;(Wo (p—?!
®n™ 1Y) =d.Xd,=%. We now have,

W = 610 (k)0 i1 0 (is) 0 65 0 (1 ® n)*)~X(W)
= 010 ()10 410 (in)(v)
= 610 (J* — 1 — P n (V).

PRrROPOSITION 8. Suppose YV is a CW-complex with only two nonvan-
ishing homotopy groups, w.=m.(Y) and wn=mn(Y). Then there is a
space of loops Q having the same homotopy groups and k-invariant as
Y if and only if EfY(Y) is the suspension of an element

k2 € H™ (g, n+ 1 T).

Proor. Let S be the suspension homomorphism and suppose
EPti(Y)=Skm*2, Let W be a space such that m(W)=0 (i=Zn-+1,
m+1), To1i(W) =m0, Tm1i(W)=mpn, EZ(W)=Fkm+2, Then Q=the
space of loops on W is the desired space. The converse is immediate.

J. C. Moore has demonstrated (unpublished) that if a & H™*+!(mr, n;
G) is primitive then « is the suspension of an element of H™+?(w, n+1;
G). Thus all H-spaces of the type under discussion are essentially
spaces of loops.

3. Let X be a given O-connected space, x¢&X. We construct a
CW-complex, K(X), whose 0-skeleton is a point k& K(X), and a
map f(X):K(X)—X such that f(X) induces isomorphisms f(X)#:
m(K(X), ko)—>m:(X, x0) for £=0. This is done by specifying the n-
skeleta K* of K(X) and maps f,: K*—X.

The 0-skeleton consists of one cell E°=k,. Suppose K" and f,:K"
—X are constructed such that the induced homomorphism

Fog 1w (K7, ko) = mi(X, o)
is an isomorphism for 7 <% and onto for 2=n. Let 4,41 be the kernel
of f,(,;’ and By Cmap1(X, %0) a set of generators of m,1(X, x0). Ap-
pend cells E}" (€ A.11), so that if et is the characteristic map of
EZ*" then (et'|I+1)Ea, and cells Ejt' (BEB,41) with it (In+1)
=ko. The map f. can be extended over cells E.*' (¢ € A,41) since
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fal €™ (I**1) is null-homotopic; fati| E3*' (BE Bay) is determined by
Fasr 0 €21 EB. Then

@) nt1
fn+l}:7ri(K ) kO) - 1!',‘(X, xo)

is an isomorphism for 2<z+1 and onto for t=n-1.

The complex K(X) is U,_, K, with the topology: C is closed in
K(X) if and only if CNK" is closed in K" for each n. The map
f(X):K(X)—>X is given by (f(X) I Km) =f,. Note that this is a modi-
fication of a construction by J. H. C. Whitehead [7].

PRrROPOSITION 9. If 74, mr are abelian groups (n <m) and k& H™ (1,
n; Tm) then there is a CW-complex K such that w.(K)=0 for 1%n, m,
Ta(K) =1, Tm(K) =1p, km=k.

Proor. Let E be the space of paths in the Eilenberg-MacLane
space K(m,, m+1) terminating in some point y¢E K (17, m+1) with
fibre map p1: E—>K(wm, m=+1) and fibre K(wy, m). If d€EH™ (7,
m-+1; 7,) is the basic cohomology class, then there is a map f: K (ma,
n)—>K(mwm, m+1) such that f*(d) =kEH" (r,, n; ®n). Note that
K(mm, m+1), K(w., n) may be chosen to be CW-complexes and f
cellular. The map f induces a space X and maps p,, F such that the
diagram

X—E

P2 l l 2
K(n, n) = K(wtm, m + 1)

is commutative and X is a fibre space over K(w,, #) with fibre map
P2 and fibre K(wn, m). From the homotopy sequence of the fibre
map p. we see that m,(X) =0 for 15#n, m, 7,(X) =ma, Tn(X) =1m.
We know that there is a map, j, of the m-skeleton of K(m,, #) into
X such that p, o j is the identity, and that the obstruction to extend-
ing j is Byt If Em+lis an (m-+1)-cell of K(m,, n) then its character-
istic map em*! (considered as a null-homotopy of (e"‘“l I™+1)) can be
lifted to a map g: ™+ XI—X with (g] I™1x0)=jo0 (e""“[ Im+1) and
g'= (gl Im+1x1): [ K (r,, m). If @ is the boundary homomor-
phism of the homotopy sequence of p; and F' = (F I K(wn,, m)) then

a-lF;{g'} = {foe™} € rp(K(rm m + 1)).

But f*d(Emt)) = {fo e”‘“}. Thus there is an isomorphism of
Hmtl(r,, n; (X)) onto H" (1, n; Tmu1(K (7w, m+1))) carrying
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Er*linto k=f*d. The desired CW-complex is then obtained as in the
beginning of this section.
This proof is the obvious generalization of one given by Thom [5].

BIBLIOGRAPHY

1. A. L. Blakers and W. S. Massey, Products in homotopy theory, Ann. of Math.
vol. 58 (1954) pp. 295-324.

2. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogénes
de groups de Lie compacts, Ann. of Math. vol. 57 (1953) pp. 115-207.

3. P. ]J. Hilton, An introduction to homotopy theory, Cambridge University Press,
no. 43, 1953.

4. M. M. Postnikov, On the homotopy type of polyhedra, Doklady Akademii Nauk
SSSR. (N.S.) vol. 76 (1951) pp. 789-791.

5. R. Thom, Quelques propriétés globales des variétés différentiables, Comment.
Math. Helv. vol. 28 (1954) pp. 17-86.

6. J. H. C. Whitehead, Combinatorial homotopy 1, Bull. Amer. Math. Soc. vol.
55 (1949) pp. 213-245.

7. , On the realizability of homotopy groups, Ann. of Math. vol. 50 (1949)
pp- 261-263.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



