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Introduction. Although several topologists (e.g. H. Hopf and A.

Borel) have found necessary algebraic conditions for a space to admit

an iJ-space structure, very little has been done towards obtaining

sufficient conditions. The author believes that the present paper con-

tains essentially the first result in the latter direction.

Let Y be a topological space with y0C Y, Y\J Y = FXyo^yoX Y

C FX Y. If <p: FV Y-+Y is the map given by <p(y, y0) = (yo, y) =y,

then the problem of finding an H-space structure on Y may be ex-

pressed as the problem of extending <f> to a map </>': YX Y—>Y. It is

found that if Y is a 1-connected, locally finite CW-complex [3], the

obstructions to extending </> may be expressed in terms of Postnikov

invariants [4] and partial extensions of <p. If Y has only two nonzero

homotopy groups then there is at most one nontrivial obstruction.

This will be zero if and only if the Eilenberg-MacLane ^-invariant of

Y is primitive.

The relation between the existence of an //-structure and the van-

ishing of the J. H. C. Whitehead bracket products is investigated.

This leads to a description of the lowest-dimensional bracket prod-

ucts on spaces whose first two nontrivial homotopy groups are in

dimensions n and 2n — l (n>l).

1. This section presents much of the notation to be used, some dis-

cussion preliminary to the main result of the paper and an example of

a space which is not an iZ-space, and yet has trivial bracket products.

If fi-.Xi-yYi (*=1, 2) are maps then the map fxXf2:XiXX2

—>FiXF2 is defined by fiXft(xi, x2) = (fi(xi), ft(x2)) for x,GX<. If
gi\ Fx—>Zi, then gi ofi.Xy-^Zi is the map given by gi o/i(x) =gi(fi(x))
for xCX, /= [0, l] is the closed unit interval; Im = lX ■ • ■ XI

(wz-factors) is the unit m-cube; lm is the usual boundary set of Im.

The discussion is restricted to locally finite CW-complexes, for if Y

is a locally finite CW-complex then YX Y is a CW-complex whose

(closed) w-cells may be taken to be of the form Em = EvXEq (p+q

= m; E", E" are, respectively, p-, and g-cells of Y) [6]. The char-

acteristic map of Em is em = epXe"; Im^>Em where ev, eq are character-
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istic maps of Ep, Eq and Im is identified with IPXI". Given cochains

cpECp(Y; Gi), c"EC"(Y; G2) and a pairing %:Gi®G2-^G we form a

cochain cpXc"ECp+q(YXY; G) whose value on a cell E"XE" is

cpXC(EpXE") = ^(cp(Ep)®cq(E")) and which is zero elsewhere. If

cp, c" are cocycles then cpXcq is, and the corresponding cohomology

classes are [cp], [c«], [c"]x[c5]= [cpXc"]. If X is a CW-complex,

its m-skeleton will be designated by Xm. The map <p:Y\/Y—*Y,

presented in the introduction, will be called the folding map of Y. If

f:A-^>B is a map, its homotopy class will be designated by {/}.

If the folding map has been extended over FV YVJ(YX Y)m then

the obstruction to extending over the (m + l)-skeleton is in the co-

homology group fl"»«( YX Y, FV Y; xm( Y)).

In case Y is (w-l)-connected, (YXY, FV Y) will be (2«-l)-

connected.

Proposition 1. The obstruction in dimension 2n to extending the

folding map is

dnXd"E H2"(Y XY,YV Y; 7r2„_i(F))

where d"EUn(Y, y; 7r„(F)) is the characteristic class for Y and the

pairing of 7T„(F)®7rn(F) into Tr2n-i(Y) is the J. 77. C. Whitehead

bracket product.

Proof. We may replace Y by a space whose (n — l)-skeleton is a

point (see §3). Then the (2n — l)-skeleton of YXY is contained in

FV Fso that the obstruction cocycle to extending </> is given by:

c   (Ei XE2) = {<^o(ex Xe2)|7   }

whereE", P2 are cells of Y and e", e\ their characteristic maps. Note that

[<l>o(ei Xe2)\I   } = [{dj, {e2}]

with {e"}, {el} regarded as elements of 7r„(F) [l]. But dn is the class

of the cocycle c" given by

cn(En) = {en}.

Thus c2n = cnXcn.

Corollary 2. c2n = 0 if and only if [a, P]=0 for a, PETrn(Y).

Proof. Suppose c2n = 0. Since 77„(F)«7r„(F) the characteristic

maps of M-cells generate 7r„(F). Thus [a, p] =0 when a, p are in this

set of generators; hence [a', P'] = 0 for all a', P'Eirn(Y). The converse

is trivial.
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On the other hand, if Y is an iZ-space then all bracket products

vanish. This raises the question: if Y is a CW-complex and [irp(Y),

7rq(Y)]=0 for p, q>0, is Fan iZ-space? The answer is negative, and

we present a counter-example:

We construct a CW-complex, K, by specifying its wz-skeleta, Km.

Let n>2 be an integer and p an odd prime. The 2w-skeleton of K is

taken to be the 2w-skeleton of a CW-complex which is an Eilenberg-

MacLane space of type (Zp, n), where Zp is the integers mod p. There

are no cells in dimension 2n + l (K2n+l = K2n) and in higher dimen-

sions, cells are appended so that iri(K) =0 for i>2n [7].

This creates a space whose homotopy groups are trivial except in

dimensions n and 2n. Thus all bracket products vanish. Also note

that H"(K; Zp)^Hn+l(K; ZP)^ZP since the cohomology groups in

these dimensions are those of a space of type (Zp, n). The (2« + l)-

cohomology group is zero, since there are no (2« + l)-cells.

Now, K is not an iZ-space, for if it were, its cohomology ring would

be a Hopf algebra and the cup product of an element of Hn(K; Zp)

with an element of H"+1(K; Zp) would be nonzero, contradicting

H2"+1(K;Zp)=0 [2].

2. The main result. Let Y be a 1-connected CW-complex, and

suppose that the folding map has been extended to <j>: Y\/Y\J(YX Y)m

—» Y. Let X be a CW-complex consisting of Y united with i-cells, E',

(i>m) such that iri(X)=0 for i^m. Note that below dimension m,

the inclusion map induces isomorphisms of the homotopy groups of

X and Y.

Proposition 3. X is an H-space.

Proof. The ra-skeleta of X and F are the same, so that (XXX)m

= (YX Y)m. Thus <p provides an extension \P':X\JX\J(XXX)m-+X.

But Hi+1(XxX, X\JX; Wi(X)) =0 for i>m, whence all obstructions

to extending^' vanish. One such extension, let us call \t\p:XXX^X,

is chosen for the structure map of X.

The condition 7ri(A') =0 for i^m also implies that any two exten-

sions of ii' will be homotopic.

In the diagram below, i*, ■ • • , i* are homomorphisms induced by

the appropriate inclusion maps: \p*, yp* are induced by ii. The coeffi-

cient group for each of these cohomology groups is 7rm(F). This sym-

bol has been omitted to save space. It is well known that i* sends

Hm+1(XXX, X\JX; irm(Y)) isomorphically onto a direct summand

of Hm+1(XXX; irm(Y)). This direct sum decomposition induces the

homomorphism p. The composition p o i* is the identity automor-

phism of Hm+1(XXX, X\/X; irm(Y)), and the kernel of p is essen-
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tially 77m+1(XV^; irm(Y)). The diagram is commutative.

*   H"+l(X + X, X V X) .*

77"'+1(X X X) ** /7"'+1(-Y XXJVU^ H*+\Y X F, F V F)

^* t   *3       t *r
Hm+1(X) v Hm+1(X, Y)

H

Let k'EHm+1(X, Y; irm(F)) be the first obstruction to retracting

Xonto F, and/fe=^'G77'»+1(X;7rm(F)). The maps pi, p2:XXX^X

are the projections pi(xi, x2) =x,- for xtEX, i — 1, 2.

Proposition 4. Let yEHm+l(YX Y, FV F; 7rm(F)) be the class of

the obstruction to extending </> to (YX Y)m+1\J Y\J Y. Then

»2 pO*  —  Pl   ~   p2)k  =   7.

Proof. The cohomology class \p*k' is the first obstruction to ex-

tending (t/'l FVFW(XXX)™) = (^)| FVFU(FXF)") to XXX and
hence ifyfk' =y. On the other hand, i*\p*k' =^{/*i*k' =\(/*k, and so

i*p4'*k=i*pi*\]/*k'= it4/*k'=y. Finally, p o (p*+p*) is the trivial
homomorphism, whence i*p(\p*—p*—p*)k = i*p\p*k = y.

If IF is an 77-space with xf/, pi, p2: WXW^W the structure map

and the two projections respectively, then a cohomology class, u, is

called primitive whenever (4'* — p* — p*)u = 0.

Theorem 5. The obstruction class, y, vanishes if and only if k is

primitive.

Proof. We already have i*p(\p* — p* — p*)k = y so that if k is

primitive, 7 = 0. To obtain the converse, we first note that i* is an

isomorphism since the inclusion map of Fin X induces isomorphisms

Hi(X)^Hi(Y) for i^m. But the image of (yp*-p*-pt)k in H^1

■(XVX; 7rm(Y)) is zero, since (*|XVX)* = (Pi\X\/X)* + (p2\X

VX)*. Thus (t*-pt-p2*)kEitlI»'+1(XxX, XVX; irm(F)) from
which it follows that p(\p*-p*-pt)k = 0 implies (i*-p*-pt)k = 0.

This completes the proof.

Note that k is essentially the (m + l)-Postnikov invariant of F.

The theorem fails to provide a decisive victory over the problem of

characterizing 77-spaces which are CW-complexes, inasmuch as it

depends upon choosing a particular extension, \f/, in each dimension.

However, for sufficiently simple spaces the problem can be solved:

Theorem 6. Suppose Y is a CW-complex which has only two non-

trivial homotopy groups, 7r„(F) and 7rm(F), with Kn<m. Then Y is
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an H-space if and only if the Eilenberg-MacLane k-invariant of Y is

primitive.

Proof. The only nontrivial obstruction to extending the folding

map is in Hm+l(YX Y, FV F; irm(Y)). Thus the space X is of type

(x„( F), n) and k may be identified with the A-invariant, A™+1( Y). The

result now follows from Theorem 4.

It may now be seen that the example of §1 was obtained by con-

structing a space with nonprimitive A-invariant.

In §3 it is shown that given abelian groups irn, irm and an element

kCHm+l(irn, n; -irm), there is a space Y (which may be taken to be a

CW-complex) such that 7T;(F) =0 for i^n, m, 7rK(F) = Tn, irm(Y) = 7rm

and kZ+1( Y) =k. Any two such CW-compIexes are of the same homo-

topy type. This observation and Theorem 5 give a classification of

CW-complexes which admit //-structures and have only two non-

vanishing homotopy groups.

Theorem 5 and Proposition 1 (§1) may be combined to yield a

result about the Whitehead bracket product. Suppose 7T;(F)=0 for

0^i<n and n<i<2n — 1. Let ivn = ivn(Y) and ir2n-i = ir2n-i(Y);

7r„<8>7r„, irn®irn designate respectively the tensor product and the

direct sum of 7r„ with itself. Three homomorphisms, ip, pi, p2'.irn®irn

—>7r„ are defined by $(a, fi)=a+fi, pi(a, B)=a, p2(a, fi)=fi for a,

fiClTn.

Proposition 7. FAe cohomology class (ip*-pX-pt)kln(Y)CH2n(ivn

®7r„, n; 7r2n_i) defines a homomorphism W:irn®x„—>7r2„_i such that

W(a®fi) = [a, fi] for a, fiCir,,.

Proof. Consider the diagram,

( ) ®1
Horn |x„ <8> 7r„; x2„_i} <— H2n(rn © irn, n; x2re-i)

; I k*

Oj®ij)* H2n(X X X; ir^i)

t «i o (it)'1

Rom{Hn(Y) ® Hn(Y);r2n-i} <- H2"(Y X F, F V F; i^)
82

The space X is of type (w„, n), so that the natural chain maps from

the cell complex of X into the singular complex of X and thence into

K(irn, n) induces a chain map, k, from the cell complex of XXX into

K(irn@Trn, n). This last induces the isomorphism k*. The homo-

morphisms ip, pi, p2 are algebraic analogues of \p, pi, p2. In particular,

K*($*-$*-ft)l%(Y) = (\p*-p*-pt)k.  The  homomorphisms if, i*
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are as defined in Theorem 5; r;:7r„—>77n(F) is the Hurewicz isomor-

phism and (t?®j?)* is the induced isomorphism of the Horn groups.

The Kunneth formula yields the homomorphisms 8i, 0^; 02 is an iso-

morphism. Note that di o (k*)'1 o i* o (i*)-1 o O^1 o ((r/®!?)*)-1 is

the identity automorphism of Horn {?r„®;r„; ir2n_i} onto itself.

Recall that dnEHn(Y; ttu) is the basic cohomology class of F.

Thus the image of d„ in Horn J77„(F); irn} is vr1 and 9i(Wo (tj-1

®rl~1)) =dnXdn = y. We now have,

W = 0io (k*)-1 ono (£)-» o 0^ o ((i, ® v)*)-\W)

= 8io(K*)-1oi* o(i2)"1(T)

= fto (#*-£-$ A*"(F).

Proposition 8. Suppose Y is a CW-complex with only two nonvan-

ishing homotopy groups, 7r„ = 7r„(F) and Trm = irm(Y). Then there is a

space of loops U, having the same homotopy groups and k-invariant as

Y if and only if k™+1( Y) is the suspension of an element

km+2 E Hm+2(wn, n + 1;t„).

Proof. Let 5 be the suspension homomorphism and suppose

kn+1(Y)=Skm+2. Let IF be a space such that in(W)=0 (i^n + 1,

m + 1), ivn+i(W)=wn, wm+i(W)=irm, k™+?(W) =km+2. Then ft = the

space of loops on W is the desired space. The converse is immediate.

J. C. Moore has demonstrated (unpublished) that if aEHm+1(ir, n;

G) is primitive then a is the suspension of an element of IIm+2(-ir, n + 1;

G). Thus all 77-spaces of the type under discussion are essentially

spaces of loops.

3. Let X be a given O-connected space, x0EX. We construct a

CW-complex, K(X), whose 0-skeleton is a point k0EK(X), and a

map f(X):K(X)—*X such that f(X) induces isomorphisms f(X)§:

iTi(K(X), ko)—>iTi(X, x0) for i — 0. This is done by specifying the n-

skeleta Kn of K(X) and maps /„: Kn-*X.

The 0-skeleton consists of one cell E° = k0. Suppose Kn and fn'.Kn

—>X are constructed such that the induced homomorphism

fn\   '.Ti(Kn,   k0) ->Xi(X,   Xq)

is an isomorphism for i<n and onto for i = n. Let An+i be the kernel

°f fn# and Bn+iEir„+i(X, x0) a set of generators of wn+i(X, x0). Ap-

pend cells E„+1(aEAn+i), so that if e"+1 is the characteristic map of

Ena+1 then (c:+1|7"+I)G«, and cells E}+1 (PEBn+i) with e}+1 (P+1)

= ko. The map/„ can be extended over cells £™+1 (aEAn+i) since
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fn\el+1 (in+l) is null-homotopic;/„+i| En0+1 (fiCBn+i) is determined by

fn+ioel+lCfi. Then

fn+if'-ir,(K     , Ao) —*Ti(X, x0)

is an isomorphism for i<n + l and onto for i = n + l.

The complex K(X) is U^-o Kn, with the topology: C is closed in

K(X) if and only if Cf~\Kn is closed in Kn for each n. The map

f(X):K(X)-*X is given by (/(X) | K*) =/„. Note that this is a modi-

fication of a construction by J. H. C. Whitehead [7].

Proposition 9. Z/7r„, irm are abelian groups (n<m) and kCHm+1(irn,

n; irm) then there is a CW-complex K such that iTi(K) =0 for iy^n, m,

irn(K) =x„, irm(K) =irm, km = k.

Proof. Let E be the space of paths in the Eilenberg-MacLane

space K(irm, m + l) terminating in some point yoCK(irm, m + l) with

fibre map pi:E—>K(irm, m + l) and fibre K(irm, m). If dCHm+1(irm,

m + l; irm) is the basic cohomology class, then there is a mapf:K(irn,

n)-*K(irm, m + l) such that f*(d) = kCHm+1(^n, n; irm). Note that

K(irm, m + l), K(irn, n) may be chosen to be CW-complexes and /

cellular. The map / induces a space X and maps p2, F such that the

diagram

F
X->E

Pi I i pi
K(irn, n) —» K(irm, m+l)

is commutative and X is a fibre space over K(irn, n) with fibre map

p2 and fibre K(irm, m). From the homotopy sequence of the fibre

map p2 we see that iri(X) =0 for i^n, m, irn(X) =ir„, irm(X) =irm.

We know that there is a map, j, of the m-skeleton of K(ir„, n) into

X such that p2 o/ is the identity, and that the obstruction to extend-

ing/ is A™+1. If Em+1 is an (iw + l)-cell of K(irn, n) then its character-

istic map em+1 (considered as a null-homotopy of (em+1\ Im+1)) can be

lifted to a map g:Im+1XI-*X with (g\ /m+1X0) =/ o (em+1\ Im+1) and

g'=(g\im+1Xl)'-im+l^>K(irm, m). If d is the boundary homomor-

phism of the homotopy sequence of pi and F' = (F\K(irm, m)) then

d-'F^g'} = j/oe"+'J Cirm+i(K(rrm,m+l)).

But f*d(Em+1)={foem+1}. Thus there is an isomorphism of

Hm+1(irn, n; irm(X)) onto iZm+1(7r„, n; irm+i(K(irm, m + l))) carrying
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k™+1 into k =f*d. The desired CW-complex is then obtained as in the

beginning of this section.

This proof is the obvious generalization of one given by Thorn [5].
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