
ON THE HILBERT MATRIX1

TOSIO KATO

The present paper is concerned with the existence2 of the eigen-

value ir of the Hilbert matrix A =((i+k —1)_1) or A = ((i+k)'1), i,

k = l, 2, 3, • • • . It is well known that,3 considered as a linear oper-

ator in the Hilbert space I2 of vectors with finite square sum of

components, A is symmetric, positive-definite and bounded, the up-

per bound being equal to ir. It is further known that4 ir is not an

eigenvalue of A thus defined. However, the question has remained

open whether there exists any eigenvector (not belonging to the Hil-

bert space) with the eigenvalue ir of the matrix A.

In what follows we shall show that there exists such an eigen-

vector x and that x may be chosen positive. Further we shall show

that x is logarithmically convex in the sense that [x(i-\-l)]2^x(i)

■x(i+2).

Actually we shall establish these results for a rather wide class of

matrices containing the Hilbert matrix as a special case. Our method

is quite simple and elementary: we consider the dominant eigen-

vectors6 of the nXn segments A„ of A and show that the ith com-

ponents of these eigenvectors form (when properly normalized), for

each fixed i, a monotone converging sequence; the limiting vector

thus obtained being shown to be the required eigenvector of A.

These results may be of some interest in view of various numerical

work6 done recently on the segments An of the Hilbert matrix. Ac-

tually the present investigation was suggested by a table7 of the

dominant eigenvectors of An.

1. In what follows we consider matrices A = (a(i, k)) which may

be finite or infinite, square or rectangular. In any case we assume that

the indices i, k take on positive integral values starting with 1, that is,

i=l, 2, • • ■ , m(A) and k = l, 2, ■ ■ ■ , n(A), where m(A) and n(A),

which may be finite or infinite, denote respectively the number of
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1 This paper was prepared in part under a National Bureau of Standards contract

with The American University sponsored by the Office of Naval Research.

2 This gives a solution to a research problem raised by Taussky [9].

'See Schur [7], Magnus [4; 5], Taussky [8], Hardy, Littlewood and Polya [3],

4 See Magnus [5], Taussky [8].

6 See paragraph 2 below.

6 For instance, see Fairthorne and Miller [2], Savage and Lukacs [6], Todd [lO].

7 Fairthorne and Miller [2]. The writer is also indebted to Professor Forsythe for

communicating his interesting numerical results regarding these eigenvectors.
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the rows and columns of A. Also we consider column-vectors x = (x(i))

as special cases of matrices with only one column.

Definition 1.1. A matrix A = (a(i, k)) is said to be a P-matrix if

(1) A is positive (that is, all a(i, k) are positive) and (2) all minor

determinants of second order

a(i, k) a(i, k + 1)

a(i + I, k)    a(i + 1, * + 1)

composed of four neighboring elements are non-negative.

It is convenient to regard any positive vector as a P-matrix.

Actually the restriction in (2) above that the four elements of the

minor determinant be neighboring is superfluous. In fact, it follows

from (2) that

a(i, k + 1)      a(i + 1, k + 1)      a(i + 2, k + 1)

a(i, k)     ~     a(i + I, k) a(i + 2, k)

.       <  a(l +*.*+!)

a(i + p, k)

for p>0, and hence further that

a(i + P, k)      a(i + p, k + 1) a(i + p, k + g)

a(i, k) a(i, k + 1) a(i, k + q)

for p>0, q>0. This shows that all minor determinants of second order

are non-negative.

Definition 1.2. Let A = (a(i, k)) and B = (b(i, k)) be two positive

matrices. We shall write A<&B if (1) the size of A is not larger than

that of B (that is, m(A)^m(B), n(A)Sn(B)) and (2) the ratio

c(i, k) =b(i, k)/a(i, k) is a monotone nondecreasing function of i and

k (that is, c(i, k)^c(i+l, k), c(i, k)^c(i, k + l)) as long as it is de-

fined (that is, for l^i£m(A), l^kiin(A)).

The condition (2) may also be expressed as

(i2) a(i+p,k+q)^b(i+p,k+q)> ^0>^o.

a(i, k) b(i, k)

The special case in which A and B reduce to vectors x = (x(i)) and

y = (y(i)) is particularly important. Thus we write x<JCy whenever

x, y are positive and y(i)/x(i) is nondecreasing with i. In this case

(1.2) becomes

x(i + p)      y(i + P)
(1.3) ,/   =        ,.     > ? = 0.

x(t) y(i)
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Lemma 1.1. Let A, B be two finite, rectangular, positive matrices

such that A<£B, and let x, y be two positive vectors such that x<£y.

Furthermore, let the size of these matrices and vectors be such that the

products Ax, By are defined. Then Ax<£By provided B is a P-matrix.

Proof. We have only to prove that D(i) ^0 where

=    (Ax)(i) (By)(i)

(Ax)(i+l)   (By)(i+l)

Ha(i,j)x(j) ZKi,k)y(k)
i *
Zad+l,j)x(j)     ZHi+l,k)y(k)
j *

= EE   a(i,j) b(i,k)
r» aa+i,j) bd+i,k) wm

the indices j and k running from 1 to n(A) and from 1 to n(B) re-

spectively.

The terms with/ = £ on the right are non-negative by (1.2). Fur-

thermore, the terms with/^w(.4)<& are, if any, non-negative since

a(i + l,j) ^ b(i + l,j)      b(i + I, k)
(1.4) -^-f*-

a(i, j) b(i, j) b(i, k)

by (1.2) and (1.1).
The remaining terms can be arranged in pairs such as

a(i, j) b(i, k)
D(i,j,k)=        ;'J' ' '   '       x(j)y(k)

.      . a(t+ I, J)    b(t+ l,k)

a(i, k) b(i, j)
+ J x(k)y(j),

a(i+l,k)   b(i+l,j)

where 1 £j<k^n(A). We shall show that D(i, j, k) ^0 so that D(i)
^0 follows.

We have

Vb(i + 1, k)      a(i+ 1,/)"|
D(i,j, k) =   -\—^-L ~       ..   ;"   a(i,j)b(i, k)x(j)y(k)

L    b(i, k) a(i, j)   J

rb(i+l,j)      a(t+l,*)-|
+    ■\7^r ~       ,-  L     W< k)b(i,j)x(k)y(j).

L   b(i ■>) a(i, k)    J

The expression in the first [ ] on the right is non-negative, since

(1.4) is valid here too. Moreover, the other factors of the first term

satisfy the inequalities
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a(i,j)b(i, k) ^ a(i, k)b(i,j),

x(j)y(k) £ x(k)y(j)

since A<KB and x<Ky respectively (see (1.2) and (1.3)). We have

therefore

n/• ■ « ^ P(* + *•k)    a(* + W , 6(* + ^    a^ +*• *>1
!>(*, j, fc) =M-h ■-

L   6(J, k) a(i, j) b(i, j) a(i, k)   J

■a(i, k)b(i, j)x(k)y(j).

But the combination of the first and the fourth terms in [ ] on the

right is non-negative since A<KB, as well as the combination of the

second and third terms. This gives the desired result that D(i, j, k)

^0.

2. Let A be a finite, positive, square matrix.8 Then there is a posi-

tive eigenvalue X, called the dominant eigenvalue, of A which is larger

in absolute value than any other eigenvalues of A. There is only one

linearly independent eigenvector x of A corresponding to the domi-

nant eigenvalue, and x can be taken positive. In what follows we

shall call x the dominant eigenvector of A, when x is normalized in

such a way that x(l) = 1.

The dominant eigenvector can be constructed by means of the so-

called iteration method. Let x° be an arbitrary positive vector with

the length n(A) normalized by x°(l) = 1, and let a sequence of vectors

xr be determined successively by xr = const. Ax**1, xr(l) = l. Then

limr.„ xr = x exists and coincides with the dominant eigenvector of A.

Lemma 2.1. Let A, B be two positive, finite, square matrices such that

A <£.B and let B be a P-matrix. Let x, y be the dominant eigenvectors of

A, B respectively. Then we have x<?Cy. In particular 0<x(i)^y(i) for

i=l, 2, • • ■ , n where n = n(A).

Proof. Let x° and y° be the vectors with all components unity and

with lengths equal to n(A) and n(B) respectively. Let us apply the

iteration method described above to A and B, starting with these

initial vectors x° and y° respectively. Thus we get two sequences xr

and yr of positive vectors. Since we have obviously x°<SCy° (see Defini-

tion 1.2), successive application of Lemma 1.1 shows that xr<3Cyr

holds for all r = 0, 1, • • • , for the relation w<3C» is preserved when u

or v is multiplied by a positive scalar. But since lim xr = x and lim yr

= y, we obtain x<$Cy. The relation x(i)^y(i) follows from (1.3) and

8 As regards the properties of positive matrices used here, see for instance Wielandt

[ll], where other references may also be found.
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the normalization condition x(l) =y(l) = 1.

3. We are now in a position to give our main theorem.

Theorem I. Let A = (a(i, k)), i, k = l, 2, • • • , be an infinite P-

matrix. Let \n and xn — (xn(i)) (xn(l) = l) be the dominant eigenvalue

and eigenvector of the nXn segment An of A. Then the sequence {X„} is

increasing,* and the sequence }x„} is nondecreasing in the sense that

m<n implies xm<5Cx„. In particular the sequences {x„(i)} with fixed i

are nondecreasing. If lim,,.,,, Xn=X is finite,10 then X is an eigenvalue11

of A, and there exists a positive eigenvector x such that .4x=Xx, xn<3Cx,

xn(i)^x(i), lim,-,, x„(/)=x(i), x(l) = l.

Proof. It is obvious that all segments An are P-matrices and that

m <n implies Am<g.An. It follows from Lemma 2.1 that xm<Kx„, hence

in particular 0<xm(i)^xn(i), for i^m<n. For a fixed i, {x„(i)} is

therefore a nondecreasing sequence of positive numbers. This proves

the first part of Theorem I.

Suppose now that the increasing sequence {Xn} of positive num-

bers is bounded and let lim„_M Xn=X. Then

n

E <*(!. k)Xn(k) = X„x„(l) = X„ < X,
i-I

so that x„(t)^Xa(l, t)-1, i^n. Thus the nondecreasing sequence

(x„(i)} with a fixed i is also bounded, so that the limit x(i)

= lim„..M xn(i) exists for each »=1, 2, • • • . Obviously we have

(3.1) 0 < xn(i) g x(i), x(l) = 1.

We shall now show that the infinite vector x = (x(i)) is an eigen-

vector of A for the eigenvalue X.

We first note that for m <n

m n

E«(*. k)xn(k)   <  E a(i>  k)xn(k)   =  \nXn(i), t g  ».
*=1 *=1

Let m—><» for fixed m and i. Since lim Xn=X and lim x„(i) =x(i), we

obtain E?-i a(*> k)x(k) £\x(i). Since this is true for all m, we obtain

(3.2) E «(*. *)*(*) ̂  ^x(i), i=l, 2, •■-,
_           *-i

• This is well known and is a simple consequence of an inclusion theorem given

in Collatz [l]. Cf. also Wielandt [ll].

10 This is the case if, for instance, A is a symmetric, bounded matrix in the sense

of Hilbert. Then X is precisely the upper bound of A.

11 It is not clear whether X is in any way distinguished among the eigenvalues of A.

In particular it is doubtful that X is the largest eigenvalue of A.
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the convergence of the infinite series on the left being established.

On the other hand, we have

n n

22 a(i, k)x(k) ^ 22 fl(*i k)xn(k) = \nx„(i), i-^n,
<fc-l i-l

by (3.1). Letting »—>», we obtain

00

(3.3) 2 «(*. *)*(*) = **(*). »-l,2, ■••.
*-i

The two opposite inequalities (3.2) and (3.3) give the desired relation

00

23 «(*'. k)x(k) = Xx(i), t = 1, 2, • • ■ .
*-i

4. Under some additional conditions on the matrix A we can get

further information on the eigenvector x of Theorem I.

Definition 4.1. A positive matrix A = (a(i, k)) is said to be

column-wise logarithmically convex if a(i, k)a(i+2, k) ^ [a(i+l, k)]2

holds whenever the expressions are significant. In particular a posi-

tive vector x = (x(i)) is said to be logarithmically convex if x(i)x(i + 2)

^[x(i+l)]\

The property of a positive matrix being column-wise logarith-

mically convex is closely connected with the relation reintroduced by

Definition 1.2. To see this, we introduce two (m-l)Xm matrices

Um = (um(i, k)) and Vm = (vm(i, k)) defined by un(i, i) = l, vm(i, i+l)

= 1, » = 1, 2, • • • , m — 1, all other elements being equal to zero. For

any mXn matrix A, both UmA and VmA are (m — 1) Xw matrices:

UmA is obtained from A simply by omitting the last row, while VmA

is obtained by omitting the first row of A and renumbering the re-

maining rows. The relationship stated above is now given by the

following lemma.

Lemma 4.1. Let A beanmXn P-matrix. Then A is column-wise loga-

rithmically convex if and only if UmA <K VmA.

Proof. By Definition 1.2 the property UmA<g.VmA is equivalent to

the condition that

a(i + 1, k)      a(i + 2, k) a(i + 1, *)      a(i + 1, k + 1)

a(i, k) a(i + 1, k) a(i, k) a(i, k + 1)

But the second of these inequalities is satisfied by the assumption

that A is a P-matrix, while the first is equivalent to the condition

that A be column-wise logarithmically convex.
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Lemma 4.2. Let A be an mXn P-matrix column-wise logarithmically

convex, where m, n< <». Then, for any positive vector x of length n, the

vector Ax is logarithmically convex.

Proof. By Lemma 4.1 we have UmA<^VmA. Since x<Cx is trivially

satisfied and since VmA is a P-matrix (with .4), it follows from Lemma

1.1 that UmAx<&VmAx. But as the positive vector Ax may be re-

garded as a P-matrix, we see from Lemma 4.1, applied to the vector

Ax instead of to A, that the vector Ax is logarithmically convex.

Lemma 4.3. Let A be a finite, square P-matrix column-wise logarith-

mically convex. Then its dominant eigenvector x is logarithmically con-

vex.

Proof. This is an immediate consequence of Lemma 4.2 and the

relation Xx=^4x, X>0.

These lemmas lead to the following theorem.

Theorem II. In Theorem I let A be column-wise logarithmically

convex and let limn-a, X„=X be finite. Then the eigenvector x is logarith-

mically convex.

Proof. By Lemma 4.3 each eigenvector xn of Theorem I is logarith-

mically convex, so that the same is true with their limit x.

5. The preceding results can be applied to the Hilbert matrix.

Let us consider the generalized Hilbert matrices Ae with the elements

a,(i, k) = (i+ k + 6)-\       i, k = 1, 2, 3, • • • ,

where 9 is a real number and we assume in what follows that0> —2.

Then it is easily verified that Ae are P-matrices column-wise logarith-

mically convex, and that Ae'«.At" for 8' <6". Also it is known that

A e are non-negative-definite, bounded matrices in the sense of Hil-

bert, the precise upper bounds Me being given by12

Me = 7r/sin t8    for    -2 < d ^ - 3/2.

Me = ir    for   d £ - 3/2.

This implies18 that the sequence of the dominant eigenvalues of the

nXn segments Ae,n of Ae is bounded and has the limit Me for «—»<».

Thus Theorems I and II show that Ae has an eigenvalue equal to Me

with a positive eigenvector x« with x»(l) =1. This eigenvector x« has

the following properties.

18 See Schur [7] and Magnus [4],

11 See footnote 10.
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(1) X) is positive, logarithmically convex and lim,-.., xe(i)=0.

(2) 6' <B" implies xe><£.xe", in particular xe>(i) £xe"(i) for all i.

Thus for larger 6, Xe(i) is more slowly converging to zero for i—>oo.

(3) For 0 si — 1, the square sum of the components of x8 is infinite.14

The first part of (1) is an immediate consequence of Theorems I

and II. The logarithmic convexity implies that xe(i) tends to a finite

or infinite limit for i—> oo. That the limit must be zero follows from

the convergence of the series expressing the components of the left-

hand side of AeXe = M$xe. To prove (2), we consider the dominant

eigenvectors xe,n of the segments Ae,n of Ae. Then 8'<8" implies

-4e',n<G4fl",„, hence X9<,„<Kxs",„ by Lemma 2.1, and the limiting pro-

cedure w—>°° gives x9'«x«". Property (3) is known16 for 0= — 1, and

the result (2) shows that it is also true for 0> — 1.

The above results are still unsatisfactory in many respects. These

questions are still open: Is xe the only linearly independent eigen-

vector to the eigenvalue Mel Are there other eigenvectors of Ae, in

particular, are there eigenvalues of Ae larger than Me with or without

positive eigenvectors? The writer wishes to discuss some of these

questions on another occasion.
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THE GIBBS PHENOMENON FOR BOREL MEANS

LEE LORCH

1. Statement of result. We prove here the following

Theorem. Let Bx(t) denote the xth Borel exponential or integral

mean of the Fourier series

"   sin nt
(1) Z-

n=l       n

Then, for given T, 0 ̂  T^ <»,

/'T sin v-dv,
0         v

where1

(3) ix->0+    and    xtz-*T.

Thus, the Borel means display the same Gibbs phenomenon and

have the same Gibbs ratio as classic convergence, even achieving this

ratio for the same value, ir, of the parameter P. Except for the last

assertion, the same is true (as O. Szasz has shown [5; 6]) of the

generalized Euler means Er, 0<r<l, all of which are equivalent to

the Borel summation method for Fourier series and whose Lebesgue

Presented to the Society, April 14, 1956; received by the editors January 27, 1956
and, in revised form, February 20, 1956.

1 The assumption that tx->0+ is redundant except when T is infinite. The more

restrictive condition that »/„—>0, which, again, is needed only when T= °o, is imposed

by O. Szasz in his first discussion of the corresponding problem for generalized Euler

means [5]. The analogous restriction here would also simplify the technical details of

the proof, as shown in §3.


