
CLASSES OF MAXIMUM NUMBERS ASSOCIATED WITH
TWO SYMMETRIC EQUATIONS IN N RECIPROCALS1

H. A. SIMMONS

1. Introduction. As in papers [l]2 and [2], we let 23«'.i (1/*) stand

for the elementary symmetric function of the jth order of the i re-

ciprocals (l/xP), (p = l, ■ ■ ■ , i; i>0) with

y^ (1/x) = 0 when i < j or j < 0,
>. i

sb 1 when j = 0

(S«'.y (x) having a similar meaning for the xP themselves).

In §§1-4, we consider the equation

(1) E (l/x) + Lr+i £ (1/x) + • • • + L. £ (1/x) = b/a,
n,r n,r+l n,s

a=(c+l)b- 1,

in which r, s, n are positive integers with r<s^n; each Lp,

(p = r + l, • • ■ , s), is a non-negative integer; and b, c are arbitrary

positive integers.

In §5, we shall state results for another equation which follow from

the procedure of §§1-4.

For convenience, we define

(2) <f>p(l/x) = £ (1/x) + L^i   £  (1/x) + ... + L. £ (1/x),
P.r P.r+1 p,»

(r ^ p ^ n).

Presented to the Society, April 22, 1955; received by the editors February 5, 1955
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1 Due to ingenuity of the referee, we have changed our method of reasoning about

this material; a different use of relations (6) here has caused us to modify our trans-

formation procedure. On account of this, we have replaced our former "£-so!utions"

by much more general "admissible solutions." Consequently, we have generalized the

result in our first manuscript to Theorem 1 here, and we have done so relatively

briefly. Furthermore, we have identified existentially every admissible solution of

equation (1) that we would use in passing from a given admissible solution x of (1),

x different from the Kellogg solution w in (5), to w.

The material of §4 here would not have occurred to us; it is entirely due to the ref-

eree, and it is largely in his wording. We are extremely grateful for his assistance, so

much so that we offered to share the title of this paper with him.

2 Numbers in square brackets refer to papers whose titles appear in the list of

references at the end of this article.
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Consequently, (1) is expressed by <pn(l/x) =b/a with a as in (1).

Hence, using the notation

(3) NP(x) =     £    (x) + LT+i  £ (*) + •••+ L.    £    (x),
p,p—r+l v.v—r p.p—B+l

(p = r, ■ ■ ■ , n - 1),

and (2), we also write, for convenience,

1 >£}      1        Nt(x)
(4) <pv(l/x) = -+ £-— (r<p* n).

Xi •  • •   Xr <«r      Xt+l    Xi • •  •  Xt

By definition, the Kellogg solution [3] of (1) is obtained by taking

the variables xi, x2, • • • , x„_i in this order as small as possible (among

positive integers). In obtaining this solution, say w, one would have

a'i> = li (£ = 1> ' ' ' > r~l)i and wr = c+l. Also since the term summed

in (4) equals

[aNt(x) + 1] - 1

Xt+i(axi • • • Xt)

which reduces to (axi • • • xt)~1 — (axi ■ ■ ■ x(+i)_1 when x(+i = aiV<(x)

+ 1—the Kellogg choice for x1+1 after the first tx's have been selected

by his method—one readily completes thelKellogg solution x = w,

namely:

wp= 1,    (p = 1, ■ ■ ■ ,r - 1), wr = c + 1,

wp+i = aNp(w) + 1,   (p = r, ■ ■ • , n — 2), wn = aNn-i(w).

Heretofore, we have called any solution of (1) in which

(i) Xi^x2^  • • ■ ^x„;

(ii) the xp, (p = l, • • • , n — l), are positive integers

an £-solution of (1), and we have considered such solutions only.

However, the procedure to be used here reveals that we can obtain

greater generality by merely requiring that the elements Xy in each

solution x of (1) be real numbers ^1, satisfying (i), and such that

(6) 4>p(l/x) ^ b/a — l/(axi ■ • • xp), (p = r, ■ ■ • , n — 1).

Henceforth such solutions will be called admissible solutions, and we

shall confine our attention to these.

Reasoning used in [l] shows that when x is an E-solution of (1),

(6) holds for each indicated value of p. Furthermore, one readily

finds that when x = w, the equality sign applies in (6) for each value of

p. Being an .E-solution of (1), w is admissible.

Now let P(x)=P(xi, x2, • • • , x„) be any nonconstant, symmetric
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polynomial in the n elements xp, (p = 1 ,•••,«), with no negative

coefficient.

The result which we are to prove relative to (1) is as follows.

Theorem 1. If x is an admissible solution and xt^w, then xn<wn

andP(x)<P(w).

2. Lemmas that we use in proving Theorem 1. The following

lemma is essentially Lemma la of [l].

Lemma 1. Let Q(l/x) stand for a symmetric polynomial in the u

reciprocals (l/xp), (p = l, • • • , u; u>l), which is not a mere constant

and contains at least one positive, and no negative, coefficient; with i and

j equal to distinct positive integers each less than or equal to u, let xit Xy,

a, fi be positive numbers with a<x,-^xy; and suppose that the expression

which is obtained by replacing in Q(l/x) the numbers x,-, xy by (x< —a),

(xj+8), respectively, equals Q(l/x); then

(7)      XiXy £ (Xi — Ci)(Xj + fi),     Xi + Xy < (x,- — a)   + (Xj + fi)  ,

where h is any positive integer. Furthermore, the equality sign holds in

(7) if, and only if, Q(l/x) is a polynomial in (xi • • • x„)-1.

Lemma 2. If x is an admissible solution for which the equality sign

applies in (6) for p=k, (r^k<n), then x4+i>x4 except when (1) is

*1-1+X2~1 = 1.

Proof. By hypothesis and our definition of cpp(l/x), we have

(axi • • • xj)-1 = b/a — 4>k(l/x) = 4>n(l/x) — d>*(l/x)

^ 4>k+i(l/x) — 4>k(l/x)

=■ x*+i  X) (1/*).
*,r-l

so that

x*+i = a    E    (*) = axk ^ xk
k,k-r+l

with the inequality sign holding throughout except when n = k + l =2

and r = l=a; that is, except in the special case indicated in the state-

ment of Lemma 2.

Terminology. Henceforth, if for an admissible solution the sign

< holds in (6) for p = k, (r^k<n), to reduce the &th element broadly

until the equality sign holds in (6) for p = k will mean that:

(1°) we reduce the &th element only until the equality is reached

if this does not require the &th element to be less than the (k — l)th;
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(2°) if the &th element is equal to one or more elements with

smaller subscript, or becomes so while being reduced before the equal-

ity for p = k in (6) is reached, then each such element is to be kept

equal to the &th in the rest of its reduction.

Lemma 3. If x is an admissible solution for which the inequality sign

holds in (6) for p=m, (r|wgti-l), and if we reduce the mth element

of x broadly until the equality sign holds in (6) for p=m, the new set

(Xi, • • • , Xm) obtained is such that

(8) XX = X2= ■ ■ ■ = Xm;

(9) 4>P(i/X) = b/a - (aXi ■ ■ ■ Xp)~\ (r ^ p = m).

Proof. By (1°) and (2°) above, reducing the mth element broadly

until the equality sign holds in (9) for p=m yields new elements Xu,

(« = 1, • • • , m), which satisfy (8).

Relative to (9), by hypothesis the equality sign holds in it when

p = m; so if there is just one case in (9), namely r = m, then (9) is

true. Suppose r<m. Then reducing xm only would not change the

value of <j>p(l/x), (r^p<m). Also if at some stage of our broad reduc-

tion of the mth element, the numbers xp, (p = 1, • ■ • , m) are xp with

x'm = x'm-i, and if an admissible solution x' is completed by using x'

instead of x in equations (11) below, then Lemma 2 guarantees that

we could not have

<}>m-i(l/x') = b/a — (axi ■ ■ • xOT_i)_1:

so, in the reduction while x'm = x'm-i, we would have <pm-i(l/x') <b/a

— (axi • • • Xm-i)-1. Similarly, we could not have simultaneously

xJ = xp ,    <pp(l/x') = b/a — (axi • ■ ■ xp)_1,      (r ^ p < m — 1),

when there is at least one value of p satisfying the indicated condi-

tions. Reasoning similarly about cases in which x„' = x„' where u and

v are distinct values of p, (r^p^m — 1), completes the proof that the

set Xi, ■ • ■ , Xm which is obtained from xi, • • ■ , xm by decreasing xm

broadly satisfies (9).

Reasoning used in §1 about the term summed in (4) yields the

following lemma.

Lemma 4. If x is an admissible solution for which the equality sign

holds in (6) when p=m, (r^m^n — 1), then the equations

(10) <j>P(l/x) = b/a - (axi • • ■ xp)-\ (p = m + 1, • • • , n - 1),

hold if, and only if, the x's with subscript larger than m are as follows:
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(11)   Xj, = aNp-i(x) + 1,   (p = m + 1, •••,» — 1),   x„ = aA7„_i(x),

where for m=n — l all equations in (10) are to be discarded, and all in

(11) except its last equation.

3. Proof of Theorem 1. If x is an admissible solution for which the

inequality sign holds in (6) for p — n — l, keeping the left member of

(1) equal to b/a, we decrease x„_i broadly until the equality sign holds

in (6) for p = n — 1 and we increase x„ accordingly. The new set X ob-

tained satisfies the case m = n — 1 of (8) and (9) with equality in the

latter for p = n — 1: and Xn=aNn-i(X)>xn. Obviously X is admis-

sible. Furthermore, in transforming from x to X, every element that

was decreased was no larger than the single element x„ which was

increased. Consequently, by Lemma 1, P(X)>P(x).

Next, if x is an admissible solution of (1) for which the inequality

sign holds in (6) for p = k, (r^k<n — l), but not for p equal to any

one of the numbers k + l, ■ ■ ■ , n — l (where this set is now not

vacuous), so that, in particular for p = k + l,

4>k+i(l/x) + (axi ■ ■ ■ Xjt+i)-1 = b/a,

then maintaining this equality, we decrease xk broadly until the equal-

ity sign holds in (6) for p = k, and we increase x*+i accordingly. The

first (k + l) elements of the new set X satisfy the case k + l —m of (8)

and (9) with equality in (9) for p = k + l. By Lemma 1, the product

and the sum of the Ath powers of the £ + 1 elements Xu • • • , Xk+i,

h any positive integer, exceed the product and sum of the Ath powers,

respectively, of the corresponding elements Xi, • • • , xk+i. (We let

Xp in X correspond to xp in x.) Furthermore, it is obvious that we

can complete an admissible solution X of (1) by using X in the place

of x in those cases of (11) which define the Xj (j = k+2, • • -,«);also,

from the nature of our transformation and Lemma 1, we know that

Np(X)>Np(x) ior p = k + l, • • • , n — l. Consequently

(12) Xn > Xn,       P(X) > (Px),    (Lemma 1).

The two types of argument used in the last two paragraphs above

guarantee that if x is an admissible solution for which the inequality

sign holds in one or more cases of (6), we can transform x into another

admissible solution X ior which the equality sign holds in (6) for

every p. Furthermore, such argument shows that (12) holds. Conse-

quently, if r = 1, so that X is necessarily w, we are through.

Next, suppose that r>l and that x, (x9^w), is an admissible solu-

tion for which the equality sign holds in (6) for p = r, ■ ■ ■ ,n — l; now

necessarily xr_i>l. Then, keeping
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<pr(l/x) + (axi ■ ■ ■ Xr)'1 = b/a,

we decrease to 1 every xp, (p = l, • • • , r — 1) that exceeds 1, and we

increase xr accordingly. The product of the first r elements is left un-

changed ( = c+l), but, by Lemma 1, the sum of the hth powers of

these elements is increased. Consequently, when we complete our

admissible solution X by writing [cf. (11)]

Xp = aNP-i(X) + 1,    (p - r + 1, • • • , n - 1),    Xn = aNn-i(X),

no one of these elements will be less than its correspondent in x, and,

since n>r, we shall surely have X„>xn and P(X) >P(x). Since X is

now necessarily w, our proof of Theorem 1 is complete.

4. Another proof of Theorem 1.

Lemma 5. The admissible solutions x—considered as points in the

space of the variables Xi, • • • , x„ under our specified conditions (of

admissibility)—form a closed, bounded region of n-space.

Proof. Suppose false. Then there exists a sequence of admissible

solutions x(l), x(2), • • • , such that x£° tends to infinity as v does so.

Since 0<b/a=<pn(l/x), we see that x™ does not tend to infinity for

some fixed N, l^N<n. Without loss of generality, suppose N maxi-

mal. Then we have

limit <pN(l/x^) = limit <j>n(l/x^) = b/a.

Hence limit,_M (axi"} • • ■ xjf)-1=0, which is a contradiction since

1 Ss Xi    s • • • s xn .

Now to prove Theorem 1, it suffices to prove this: if x is an admis-

sible solution 7*w, there exists another admissible solution y of (1)

such that

yn > xn,       P(y) > P(x).

By reference to §3, we see that the first X into which our procedure

carried any admissible solution x other than w can be taken as y;

and the proof is complete.

5. Another equation and our result for it. Consider the equation

(13)      Lr £ (1/x) + Lr+1   £  (1/x) + • • • + L, £ (1/x) = 1,
n,r n,r+l n,s

in which Lr is a positive integer; each 7,-, (i = r + l, • ■ • , s), is a non-

negative integer; and r, s, n are positive integers with r<s^n.
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Equation (13) contains equations which are not included in (1),

and our procedure of §§1-3 applies to (13). After a few definitions,

we shall state our result for (13).

To obtain our new definitions of <pp(l/x) and Np(x) from (2) and

(3), respectively, merely multiply the first term in the right member

of (2) and of (3) by Lr. Also we define any solution x of (13) to be

admissible if each Xj^l, (i = l, ■ ■ ■ , n), Xi:Sx2=: • • • ^x„, and the

case a = b = 1 of (6) holds.

By procedure heretofore described, one finds the Kellogg solution

of (13) to be x= W, where

(14)        WP=l, (p = l,--- ,r-l), Wr = LT + 1,

Wp+i = NP{W) + I, (p = r, • • • , n - 2),       Wn = Nn-i(W).

Theorem 2. If x is an admissible solution of (13) other than W, of

(14), then

Wn > Xn, P( W) > P(x).
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