CLASSES OF MAXIMUM NUMBERS ASSOCIATED WITH
TWO SYMMETRIC EQUATIONS IN N RECIPROCALS!

H. A. SIMMONS

1. Introduction. As in papers [1]2and [2], we let D_;; (1/x) stand
for the elementary symmetric function of the jth order of the ¢ re-
ciprocals (1/x,), (p=1, - - -, 2;4>0) with

> (1/3)

0 when 2 < j or j <0,

=1 when j=0

(2_:.; (x) having a similar meaning for the x, themselves).
In §§1—4, we consider the equation

(1) /%) + L 2 (/%) + -+ - + L, 2 (1/x) = b/a,

n,r+1 n,8

a=(c+1)b—1,

in which 7, s, #» are positive integers with r<s=<#; each L,,
(p=r+1, - - -, s), is a non-negative integer; and b, ¢ are arbitrary
positive integers.

In §5, we shall state results for another equation which follow from
the procedure of §§1-4.

For convenience, we define

(@) (/%) = 22(1/%) + Loya 22 (/%) + -+ + L, 2 (1/2),

Por P+l
(r=p=n.
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1 Due to ingenuity of the referee, we have changed our method of reasoning about
this material; a different use of relations (6) here has caused us to modify our trans-
formation procedure. On account of this, we have replaced our former “E-solutions”
by much more general “admissible solutions.” Consequently, we have generalized the
result in our first manuscript to Theorem 1 here, and we have done so relatively
briefly. Furthermore, we have identified existentially every admissible solution of
equation (1) that we would use in passing from a given admissible solution x of (1),
x different from the Kellogg solution w in (5), to w.

The material of §4 here would not have occurred to us; it is entirely due to the ref-
eree, and it is largely in his wording. We are extremely grateful for his assistance, so
much so that we offered to share the title of this paper with him.

2 Numbers in square brackets refer to papers whose titles appear in the list of
references at the end of this article.
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Consequently, (1) is expressed by ¢.(1/x) =b/a with a as in (1).
Hence, using the notation
@) No@) = 2 @O+Lu 22 @+ --+L X (2,
p,p—r+1 P, p—T p,p—s+1
p=r--,n—1),
and (2), we also write, for convenience,

1 p—1 1 N‘
4) ¢,(1/2) = ;1—-—— + Z i

Xr t=r Xe41 X1 0t X

(r<p = n).

By definition, the Kellogg solution [3] of (1) is obtained by taking
the variables x1, %3, + - -, X,—1 in this order as small as possible (among
positive integers). In obtaining this solution, say w, one would have
w,=1, (p=1, - - - ,r—1), and w,=c-+1. Also since the term summed
in (4) equals

[aNi(x) + 1] — 1

xg+1(dx1 L xt)

which reduces to (ax; - - - x)"1—(ax; - - - Xep1)"! when xe1=aN.(x)
+1—the Kellogg choice for x;, after the first ¢ x’s have been selected
by his method—one readily completes the'f;Kellogg solution x=w,
namely:

w,=1, (p=1,---,7r—1), w,=c¢+ 1,

5
®) = AN 41, (B=ryee s n—2), W= aNea(w).

Heretofore, we have called any solution of (1) in which

(i) XSX S - - Xy

(ii) the x,, (p=1, - - -, m—1), are positive integers
an E-solution of (1), and we have considered such solutions only.
However, the procedure to be used here reveals that we can obtain
greater generality by merely requiring that the elements x; in each

solution x of (1) be real numbers =1, satisfying (i), and such that
(6) ¢5(1/%) < b/a — 1/(ax1 - - - %), (p=r--,n—1.

Henceforth such solutions will be called admissible solutions, and we
shall confine our attention to these.

Reasoning used in [1] shows that when x is an E-solution of (1),
(6) holds for each indicated value of p. Furthermore, one readily
finds that when x =w, the equality sign applies in (6) for each value of
p. Being an E-solution of (1), w is admissible.

Now let P(x)=P(x;, %3, - - - , X») be any nonconstant, symmetric
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polynomial in the # elements x,, (p=1, : - -, #), with no negative
coefficient.
The result which we are to prove relative to (1) is as follows.

THEOREM 1. If x is an admissible solution and x#=w, then x,<ws
and P(x) <P(w).

2. Lemmas that we use in proving Theorem 1. The following
lemma is essentially Lemma 1a of [1].

LemMmA 1. Let Q(1/x) stand for a symmetric polynomial in the u
reciprocals (1/x,), (p=1, - - -, u; u>1), which is not a mere constant
and contains at least one positive, and no negative, coefficient; with 1 and
7 equal to distinct positive integers each less than or equal to u, let x;, x;,
a, 3 be positive numbers with a <x;=<x;; and suppose that the expression
which is obtained by replacing in Q(1/x) the numbers x;, x; by (x;—a),
(x;+B), respectively, equals Q(1/x); then

() xxi < (w— )i+ B), %4 a5 < (w —a) + (z:+ ),

where h 1is any positive integer. Furthermore, the equality sign holds in
(7) if, and only if, Q(1/x) is a polynomial in (x1 - - - x,)~L.

LeEmMA 2. If x is an admissible solution for which the equality sign
applies in (6) for p=Fk, (r<k<n), then xru1>x: except when (1) is
x1 1 x =1,

Proor. By hypothesis and our definition of ¢,(1/x), we have
(@1 - -+ %)™ = b/a — ¢u(1/%) = ¢u(1/%) — ¢4(1/x)
Z ¢rs1(1/2) — ¢u(1/%)

2 2 2 (1/9),

k,r—1
so that
ez e D, (2) 2 am = me
k,k—r+41
with the inequality sign holding throughout except when n=%F+1=2
and 7 =1=g; that is, except in the special case indicated in the state-
ment of Lemma 2.

TerMiNOLOGY. Henceforth, if for an admissible solution the sign
< holds in (6) for p =k, (r £k <), to reduce the kth element broadly
until the equality sign holds in (6) for p =& will mean that:

(1°) we reduce the kth element only until the equality is reached
if this does not require the kth element to be less than the (¢ —1)th;
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(2°) if the kth element is equal to one or more elements with
smaller subscript, or becomes so while being reduced before the equal-
ity for p==Fk in (6) is reached, then each such element is to be kept
equal to the kth in the rest of its reduction.

LeMMA 3. If x is an admissible solution for which the inequality sign
kolds in (6) for p=m, (r Em=n—1), and if we reduce the mth element
of x broadly until the equality sign holds in (6) for p =m, the new set

(X1, + + -, Xm) obtained is such that
(8) X1=2Xo=-r = X
(9) ¢p(1/X) = b/a - (aXl e Xp)_lr (r = p = m)

Proor. By (1°) and (2°) above, reducing the mth element broadly
until the equality sign holds in (9) for p =m yields new elements X,,
(w=1, - - -, m), which satisfy (8).

Relative to (9), by hypothesis the equality sign holds in it when
p=m; so if there is just one case in (9), namely r=m, then (9) is
true. Suppose r <m. Then reducing x, only would not change the
value of ¢,(1/x), (r <p <m). Also if at some stage of our broad reduc-
tion of the mth element, the numbers x,, (p=1, : - -, m) are ¥, with
Xm=%m_1, and if an admissible solution x’ is completed by using x’
instead of x in equations (11) below, then Lemma 2 guarantees that
we could not have

dma(1/2') = b/a — (az1 - Tmor)™h:

so, in the reduction while x}, =x},_1, we would have ¢,_1(1/x") <b/a
—(ax{ - - + %m_y)~L. Similarly, we could not have simultaneously

’

Xm =xp’1 ¢p(1/x’)=b/a—(ax1’~~x:,)"1, (f§p<m_1)s

when there is at least one value of p satisfying the indicated condi-
tions. Reasoning similarly about cases in which x,/ =x,; where # and
v are distinct values of p, (r <p <m —1), completes the proof that the
set X1, - - -, X which is obtained from xy, - - + , x» by decreasing xn,
broadly satisfies (9).

Reasoning used in §1 about the term summed in (4) yields the
following lemma.

LEMMA 4. If x is an admissible solution for which the equality sign
holds in (6) when p =m, (r m=n—1), then the equations

(10)  ¢,(1/2) =b/a — (ax1 -+ - 2p)7Y, (p=m+1,---,n—1),

hold if, and only if, the x's with subscript larger than m are as follows:
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(11) 2z, =aN,u(x) + 1, (p=m+1,---,n—1), 2= aN.a(x),

where for m =n—1 all equations in (10) are to be discarded, and all in
(11) except its last equation.

3. Proof of Theorem 1. If x is an admissible solution for which the
inequality sign holds in (6) for p =n—1, keeping the left member of
(1) equal to b/a, we decrease x,_; broadly until the equality sign holds
in (6) for p=n—1 and we increase x, accordingly. The new set X ob-
tained satisfies the case m =% —1 of (8) and (9) with equality in the
latter for p=n—1: and X,=aN,_1(X)>x,. Obviously X is admis-
sible. Furthermore, in transforming from x to X, every element that
was decreased was no larger than the single element x, which was
increased. Consequently, by Lemma 1, P(X) > P(x).

Next, if x is an admissible solution of (1) for which the inequality
sign holds in (6) for p =%, (r=k<n—1), but not for p equal to any
one of the numbers k41, - - -, #—1 (where this set is now not
vacuous), so that, in particular for p=k-+1,

drr1(1/x) + (axr - - - @)™t = b/a,

then maintaining this equality, we decrease x; broadly until the equal-
ity sign holds in (6) for p =%, and we increase x4 accordingly. The
first (k+1) elements of the new set X satisfy the case k41 =m of (8)
and (9) with equality in (9) for p=k-+1. By Lemma 1, the product
and the sum of the hth powers of the 2+1 elements X, - - -, Xiy1,
h any positive integer, exceed the product and sum of the Ath powers,
respectively, of the corresponding elements xi, « « -, xry1. (We let
X, in X correspond to x, in x.) Furthermore, it is obvious that we
can complete an admissible solution X of (1) by using X in the place

of x in those cases of (11) which define the X; (j=k+2, - - -, %); also,
from the nature of our transformation and Lemma 1, we know that
No(X)>N,(x) for p=~k+1, - - -, n—1. Consequently
(12) Xan > %n; P(X) > (Px), (Lemma 1).

The two types of argument used in the last two paragraphs above
guarantee that if x is an admissible solution for which the inequality
sign holds in one or more cases of (6), we can transform x into another
admissible solution X for which the equality sign holds in (6) for
every p. Furthermore, such argument shows that (12) holds. Conse-
quently, if r=1, so that X is necessarily w, we are through.

Next, suppose that »>1 and that x, (x> w), is an admissible solu-
tion for which the equality sign holds in (6) for p=7, - - - , #—1; now
necessarily x,_;>1. Then, keeping
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¢‘r(1/x) + (axl cee )= b/a,

we decrease to 1 every x,, (p=1, - - -, r—1) that exceeds 1, and we
increase x, accordingly. The product of the first r elements is left un-
changed (=c+1), but, by Lemma 1, the sum of the Ath powers of
these elements is increased. Consequently, when we complete our
admissible solution X by writing [cf. (11)]

XP = aNP—l(X) + 1, (P =r+1,:-,n— 1)v Xn = aN’l—l(X)r

no one of these elements will be less than its correspondent in x, and,
since #>r, we shall surely have X,>x, and P(X) > P(x). Since X is
now necessarily w, our proof of Theorem 1 is complete.

4. Another proof of Theorem 1.

LEMMA 5. The admissible solutions x—considered as points in the
space of the variables xi, - - -, x, under our specified conditions (of
admissibility)—form a closed, bounded region of n-space.

Proor. Suppose false. Then there exists a sequence of admissible
solutions x®, x®, . . . | such that x” tends to infinity as v does so.
Since 0<b/a=¢,(1/x), we see that x” does not tend to infinity for
some fixed N, 1 <N <n. Without loss of generality, suppose N maxi-
mal. Then we have

limit ¢x(1/2®) = limit ¢,(1/x®) = b/a.

9—> 0 P9—> 0
Hence limit,., (ax{ - - - x)~1=0, which is a contradiction since
(v) (v)
1=2% =---Say .

Now to prove Theorem 1, it suffices to prove this: if x is an admis-
sible solution #£w, there exists another admissible solution y of (1)
such that

Yn > Xn, P(y) > P(x).

By reference to §3, we see that the first X into which our procedure
carried any admissible solution x other than % can be taken as y;
and the proof is complete.

5. Another equation and our result for it. Consider the equation

(13) L2 (1/9) 4+ Lo 2 (A/2) + -+ + L 25 (1/2) = 1,

n,r n,r+1

in which L, is a positive integer; each L;, t=r+41, - - -, 5), is a non-
negative integer; and 7, s, # are positive integers with r <s <.
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Equation (13) contains equations which are not included in (1),
and our procedure of §§1-3 applies to (13). After a few definitions,
we shall state our result for (13).

To obtain our new definitions of ¢,(1/x) and N,(x) from (2) and
(3), respectively, merely multiply the first term in the right member
of (2) and of (3) by L,. Also we define any solution x of (13) to be
admissible if each x;=1, (¢=1, : - -, 5n), x1Sx =< - + + Sxa, and the
case a=b=1 of (6) holds.

By procedure heretofore described, one finds the Kellogg solution
of (13) to be x =W, where

Wp=1,(;9=1,"‘,7—1), Wf=Lr+11
Woa=N(W)+1, (p=1,---,n—2), Wa = Nua(W).

THEOREM 2. If x is an admissible solution of (13) other than W, of
(14), then

(14)

Wa > %a, P(W) > P(x).
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