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1. In the mathematical theory of fields of elementary particles one

has to do with a representation of the unitary group on a Hilbert

space 77. With any such representation T and subspace M of 77 there

is associated a self-adjoint operator called the "number of particles

in M." The particle interpretation of general wave fields is made pos-

sible in the first instance by the fact that these operators have inte-

gral proper values. The direct physical approach suggests that these

proper values should be non-negative, which however is not the case

for an arbitrary representation. The purpose of the present note is to

determine the structure of the most general "physical" representa-

tion, i.e., one for which the number of particles is always non-nega-

tive. It is shown that this structure is essentially the same as in the

case of a finite-dimensional Hilbert space.

Specifically, an irreducible physical representation is unitarily

equivalent to the canonical representation in a class of covariant ten-

sors of maximal symmetry over the "one-particle" space 77. The most

general physical representation is a direct sum of these irreducible

covariant tensor representations. For a finite-dimensional space,

these results are essentially equivalent to well-known ones giving the

structure of the general unitary representation of the unitary group

on the space. These known results are established by the use of char-

acters, a technique which is not adaptable to the infinite-dimensional

case because there is then no trace for unitary operators on the space.

The method employed is rather to approximate the space by sub-

spaces of high finite dimension and to make use of what is already

known in the finite-dimensional case.

2. Throughout this paper, G will designate the group of unitary

operators on a complex Hilbert space H. Unless otherwise specified,

the dimension of i7may be arbitrary. V will denote a given continuous

unitary representation of G on a complex Hilbert space K. The topol-

ogy of G that is used is the so-called "strong" operator topology. For

any self-adjoint operator A on 77, the self-adjoint generator of the

one-parameter group {T(eiiA): — «> <t< <x> } will be designated dT(A)

and the mapping aT from the self-adjoint operators in 77 into those
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in K will be called the infinitesimal representation associated with T.

If P is a projection with range M, dT(P) is called the number of parti-

cles in M. The representation V is called "physical" in case these

operators are non-negative.

Theorem. A continuous physical unitary representation of the uni-

tary group on a complex Hilbert space is a direct sum of irreducible such

representations. The latter are unitarily equivalent to the canonical repre-

sentations of the group on the spaces of covariant tensors of maximal sym-

metry types.

3. We recall that the space //„ of covariant tensors over H of rank

n is itself a Hilbert space, which is spanned by products of the form

Xi®x2® ■ ■ ■ ®xn, where x,- range over an arbitrary basis for H, and

in which the inner product is determined by the rule that

n

(xi ® x2 ® ■ ■ ■ ® xn, yi ® • • • <8> yn) = II (x{, yi).
i=l

For any unitary operator U on H, there is a unique unitary operator

Tn(U) on Hn taking xx® • • • ®x„ into Uxi® ■ ■ • ® Uxn. For any

element x of the symmetric group 2^» on trie first n positive integers

there is a unique unitary operator V„(ir) on i/„ taking Xi® ■ ■ ■ ®xn

into xx(1)® • • - ®xT(n). A symmetry "type" is a projection Qn in the

algebra A (%2n) of F„, a tensor in the range of Qn being said to be of

symmetry type Q„. The ordering on symmetry types is the reverse

of the ordering on the corresponding projections, so that the range Ln

of a minimal projection in A( /,„) is a space of covariant tensors of

maximal symmetry type. The Tn(U) and the V„(ir) commute, so

that Ln is invariant under the r„(£7). The mapping

U-+Tn(U)\Ln

is a continuous unitary representation, and is known to be irreducible.

It is not difficult to verify that it is physical. For further details and

references, see [l].

At this point we collect some known facts about the representations

of the unitary group on a finite-dimensional space that will be used

in the proof of the theorem. The general irreducible representation U

of the group Ga on a J-dimensional space may be specified by a

d-tup\e («!, n2, ■ • • , nd) of integers in which «i^w2^ • • ■ =«<;•

When the nk are all non-negative, the positive ones give a partition

of the sum n for which a corresponding minimal projection in the

algebra of ^Z„ determines a symmetry class of covariant tensors of

rank n on which the associated action of the unitary group is equiva-
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lent to U. The general case is reducible to this one through the fact

that in general the representation of type (ni+p, n2+p, ■ ■ ■ , na+p)

is equivalent to the direct product of the representation of type

(tii, n2, ■ ■ • , «d) with the representation a—>(det a)p. The irreducible

representation of Gd+i of type («i, n2, ■ ■ ■ , nt+i) splits on restriction

to the subgroup leaving one nonzero vector invariant, and hence iso-

morphic to Gi, into a direct sum of representations of Gd of type

(nl, ■ ■ ■ ,n£), where «i — nl = n2 = ■ ■ ■ ^nf. g^na+i, each such repre-

sentation occurring exactly once. For these and related facts about

the representations of the finite-dimensional unitary group, see [2]

and [3].

4. We need a fact mentioned above, namely

Lemma 1. For any continuous unitary representation of the unitary

group on a Hilbert space, the number of particles in any subspace has

integral proper values.2

If P is the projection on the given subspace, then the map t—>eitp'

0=[t<2w, gives a continuous unitary representation of the reals

modulo 27r. Hence the same is true of the map t—>T(eup), T being the

given representation. Now any continuous unitary representation of

the reals modulo 27r is a direct sum of the character representations

t—>eint, with n = 0, ±1, ■ • ■ . On a subspace on which T(eitp) acts as

multiplication by eint, dT(P) acts as multiplication by n and the

lemma follows.

In particular the total number of particles aT(7), where 7 denotes

the identity operator on 77, has integral proper values. As the unitary

group {eUI; 0^K2t} commutes with every unitary operator U on

77, the r(e!'7) commutes with all T(U). From this it follows readily

that the T(U) leave invariant the spectral manifolds of aT(7). It

follows that it is no essential loss of generality to assume that the

total number of particles has a fixed non-negative integral value n

(more precisely is n times the identity).

Making this assumption, we note that the number of particles in

any subspace is always at most n. For if P is the projection on the

subspace, then from the fact that eiiP and e"a~p) commute for

— «> <5, t< 00, it results that aT(P) and aT(7—P) commute in the

sense that they have a simultaneous spectral resolution. It follows

that aT(7) is the closure of the sum aT(P)+aT(7-P). As aT(7) is a

scalar multiple of the identity on the representation space, it results

that aT(P) is bounded and in fact dY(P) gaT(7).

2 This lemma and its proof are valid without the assumption made in the re-

mainder of the paper that the representation is physical.
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5. For any finite-dimensional subspace M of H, let Gm be the sub-

group of G leaving vectors in the orthocomplement of M invariant.

Then GM is isomorphic to the unitary group on M in a canonical and

obvious fashion, and the two groups will be identified where the con-

text makes the meaning clear, in order to avoid uncalled-for verbiage.

Putting YM for the restriction of V to GM and PM for the projection

with range M, dY(PM) may be identified with dTM(lM), where Im

denotes the identity operator on M. As dY(PM) g,dT(I), it results that

dTM(lM) is bounded by n. Now TM is a direct sum of irreducible co-

variant tensor representations of types (%, n2, ■ ■ ■ , nd), where d is

the dimension of M. It is easily verified that the total number of

particles for a representation of this type is ^2, n,. It follows that

only the types with

«i + n2 + ■ ■ ■ + nd = n

can arise.

A further restriction on the types that may arise in this fashion is

that all the «,• must be non-negative. For suppose that the type

(«i, n2, • • • , nd) occurs with nd= —h and A>0. Let {xi, x2, • • ■ , xd}

be an arbitrary orthonormal basis for M, and let Q be the projection

on the one-dimensional subspace spanned by xd. On the one hand,

^r(<2) =^0 since T is assumed to be physical. On the other hand, con-

sider the action of dT(Q) on the tensor w obtained by antisym-

metrization of Xi® • • • ®Xi®x2® ■ ■ • ®x2<g> • • • ®xd^i, where

each Xj occurs Wy times (j <d), regarding V as the direct product of

the representation of type (wi+A, n2+h, ■ ■ ■ , nd-i + h, 0) with the

representation a—>(det a)h. It is readily computed that dT(Q)w

= —hw, where the tensor w is identified with the corresponding ele-

ment of the representation space of T. This implies w = 0, which can

not be the case for all such w as the known form of the representa-

tions of the symmetric group shows that all such w span the range

of a nonvanishing class of tensors of maximal symmetry type.

6. Let two types (m, n2, ■ ■ ■ , nd) and (n(, n{, ■ ■ ■ ,nd) be called

"essentially equivalent" in case the n, are the same as the nj when

zero elements are disregarded. That is, »,• = «/ for/^min (d, d'). It

is clear from the preceding two sections that only a finite number of

essentially inequivalent types occur in the reduction of the various

T | GM, as M ranges over the finite-dimensional subspaces H. It fol-

lows that there exists a maximal type («i, n2, ■ ■ ■ , nd), in the sense

that if a type (wi, • • ■ , nd) occurs with «y^«y, and d^d, then either

n, = flj or /> d and n, = 0.

Let M be a fixed finite-dimensional subspace of dimension m, such
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that the maximal type occurs in the reduction of r| Gm- Let KM be a

subspace of the representation space K such that the contractions of

the T(U), UEGm, to Km give a representation of Gm of this type. If

N is any finite-dimensional subspace containing M, there is a minimal

subspace Kn of K that contains KM and is invariant under r(CrAr).

The next step in the proof is to show that Kn is automatically mini-

mal with respect to being invariant under Y(Gn), and that the con-

traction of T.v to Kn has the maximal type.

7. Let [ei, e2, • • • , c«j be an orthonormal basis for N such that

{ci, e2, ■ ■ ■ , em} is an orthonormal basis for M. Now N can be ob-

tained from M by successive adjunction of em+i, em+2, • • • , en. It is

not difficult to see from this that if the conclusion cited at the end

of the preceding section is valid when n = m + l, then it holds in gen-

eral. We now assume this to be the case, that n = m + l.

By the branching law cited above, an irreducible representation of

Gn of type (pi, p2, ■ ■ ■ , pn) branches, on restriction to Gm, into a

representation equivalent to a direct sum of the (inequivalent)

representations of the types (pi, pi, • • • , pn-i), where

Pl  ̂   Pl   ̂   Pi  ̂   Pi   S   •  •  •   ̂    Pm    ̂    Pn-

By the orthogonality of inequivalent irreducibly invariant subspaces

of a compact group, KM is orthogonal to the representation space of

any such representation of Gn unless

pi ^ Wi ^ pt ^ »2 ^ • • • ^ nm ^ pn.

That is, KM is contained in the direct sum of subspaces that are ir-

reducibly invariant under r(G.v) and on which the action of Gn is of

the maximal type.

ft follows that to show the irreducibility of KN it suffices to estab-

lish

Lemma 2. Let the unitary representation V of the group R be a multi-

ple of the irreducible representation Vi. Let S be a subgroup of R such

that the restriction of Vi to S splits into a direct sum of inequivalent

representations. Then any subspace irreducibly invariant under the re-

striction of V to S is contained in a subspace irreducibly invariant under

V.

To prove the lemma, we may take the representation space to have

the form Ei®E2, and V to have the form V(a)= Fi(a)®72, aER-

Then the ring Ai generated by the Vi(a), for aER, is the ring of all

bounded operators on Eu while the ring B generated by the Fi(a),

aES, has by virtue of the branching assumption the property that its
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commutor B' is abelian. (Here the term "ring" is used in its Hilbert

space sense, as a weakly closed self-adjoint algebra of bounded oper-

ators including the identity operator.) Now the projection P on any

subspace irreducibly invariant under the restriction of V to S is

minimal in the commutor of the ring generated by the Vi(a)®I2,

aCS, which commutor is seen to be B'®A2, where ^42 is the ring of

all bounded operators on H2.

It follows readily from the abelian character of B' that any such

projection has the form Pi®P2 with Pi minimal in B' and P2 minimal

in A2. Now Ii®P2 is minimal in the commutor of the ring ^4i®/2

generated by the V(a) ior aCR, where /,• is the ring of all scalar

multiples of /,-, since this commutor is Ji®A2. As it is obvious that

Ii®P2?tPi®P2 the lemma is proved.

Completion of proof. It has now been shown that there exists a

finite-dimensional subspace M of H, and irreducible representation

type (fi,ft, ■ ■ ■ ,/n),/i^/2= • • • ^/n>0, and an irreducibly invari-

ant subspace KM under T(Gm), on which the action of Gm is of this

type, and such that whenever iV is a finite-dimensional subspace con-

taining M, there is an irreducibly invariant subspace Kn under

T(Gjv) that contains KM, and on which the action of Gn is of type

(fit fi, ' • * i /n, 0, 0, • ■ • , 0). The union L of the Km is invariant

under any Y(Gn) for N finite-dimensional and, as the Gn generate G

in the strong topology, is invariant under T(G).

Now let T' on K' be the tensor representation of G of type

(/ii ht ' • • i /r). To conclude the proof it suffices to show that T' is

unitarily equivalent to the representation rL: U—*T(U)\L obtained

by restricting all the operators T(U) to L. For as shown in [l], V is

irreducible, so that it would follow that every continuous physical

unitary representation contains an irreducible such representation,

and hence is a direct sum of them. It would further follow that the

most general irreducible physical representation is as stated.

To set up the unitary equivalence between rL and T' let x be an

element of a Kn for some finite-dimensional subspace N containing

M. Now the restriction of T to Gn acts on Kn in a fashion unitarily

equivalent to the representation of Gn of type (fi,f2, ■ • • ,/r). Hence

there exists a unitary transformation, say Wn, from Kn, onto the

subspace KN of K' consisting of those tensors that are in the tensor-

subspace spanned by direct products of elements of N, and of sym-

metry type (/i, ■ ■ ■ , fr), that exchanges the contraction to Gn of

Tkn with T' | Gn- For it is clear from the form stated above for the

representations of type (/i, • • • , fr) that the contraction of T' to

Gn leaves invariant the stated tensor subspaces and acts on it ir-
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reducibly of type (/i, • • • ,/r). By virtue of the irreducibility of Kn

under Y(Gn), Wn is unique within a multiplication by a scalar of ab-

solute value one.

Now by definition of Wn, it takes Kn onto KN in such a fashion

that

WsT(U)wt = T'(U) \KN, UE Gn,

as the T'(U), UEGm, leave WnK'm invariant and give a representa-

tion of type (/i, • • • , fr) of GM. Now the branching law shows that

Kn contains a unique irreducibly invariant subspace of type

(/i. • • ' , fn) under Y(GM), and hence WnK'm = KM■ Restricting the

defining relation for Wn to the elements of Gm, it follows that

WmT(U)Wm = WnT(U)Wm I Km

for UEGm- It results that WM = aN(WN\ K'm), where a^ is of absolute

value one. Now choosing Wm in an arbitrary fashion and choosing

Wn so that a.y = 1, the Wn are uniquely defined relative to the choice

of Wm.

Moreover, by the argument just employed, whenever N'Z)N, Wn>

extends Wn- It is easy to deduce the existence of a unique unitary

transformation W from L onto K' that extends all the Wn. This uni-

tary W, by virtue of the fact that it agrees with Wn on Kn, has the

property

wwdw-1 = T'(U) \k'n, u e Gn,

for each N. Now if NQN', GnEGn>, so that

IFr(c7)IF-1 = T'(U) | K'n>, U E Gn.

Passing to the limit with the family {N'}, directed by inclusion, it

results that

wr^w-1 = T'(U), U egn.

Making a similar second passage to the limit shows the stated unitary

equivalence.

References

1. I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. vol.

81 (1956) pp. 106-134.
2. H. Weyl, The classical groups, Princeton, 1939.

3. -, Gruppentheorie und Quantenmechanik, 2d ed., Leipzig, 1931.

University of Chicago


