
NOTE ON SUMS OF FOUR AND SIX SQUARES

L. CARLITZ

1.  Bailey [l] showed that Ramanujan's identity

CO CO /i     _    X5")5

£/,(5W+4) = 5lI^--7
m-0 n_l     (1  —  X")6

can be derived from the identity

»   (      xq" yq"      \   = (x - y)(l - xy)

to 1(1 - xq")2      (1 - yq")2f    ~ (1 - x)2(l - y)2

"    (1 - xyqn)(l - x~ly-lqn)(l — xy-xqn)(l — x-xyqn)(l - qn)*

1 (1 - x?")2(l - x-1?")2(l - yg")2(l - y~lqn)2

which is equivalent to the familiar formula

<r(u + v)a(u + v)
&>(«) — p(») =-•

c2(u)o-2(v)

Similarly the formula

(1 - a)3 "      «V"
1 + a"1- Y, ■-(a" - a-»)

1 + a     1    1 - q2n

(2)
»   (1 - 52"a2)(l - q2nar2)(l - c72n)9

"   1 (1 - q2"a)\l - q2"ariy

which is equivalent to

t»'(«) = - <r(2u)/o-*(u),

can be used to prove various results involving partition functions.

Dobbie [3] recently constructed simple direct proofs of (1) and (2)

that require no knowledge of elliptic functions; incidentally (2) can

be derived from (1) by dividing by x—y and then letting y—>x.

The writer [2] showed that by means of (2) one can give a very

concise proof of the familiar formula for the number of representa-

tions of an integer as a sum of eight squares or of eight odd squares.

In the present note we obtain the formulas for four and six squares in

a similar manner (see for example [6, p. 307]).
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2. We recall the formulas (see for example [5, p. 282])

(3) WMt-DT^nV-T'
l - q2n

oo oo     M   _   O4")2

(4) 02(q) = 2 E ?(2"-1)S' = W* II  \ '   >i , i      1 - q2n

(5) 6,(q) = flo(-?).

It follows from (3) and (4) that

(6) 0o(q)03(q) = Olrf), ol(q) = 202(q)0*(q).

For the case of six squares we shall in addition require

(7) 0\(q) = 01(a) + 02(q),

which incidentally is proved in §3 below.

We define rk(n), rk (n) by means of

(8) 01(a) = Er*(n)g",       O^q) = E *•;(»)«".
n—0 n—l

3. In (1) replace g by q% and then put y= —x = q. The left hand
side of (1) becomes

oo r n2n+l g2n+1 }

.io   1(1 - <72B+1)2 + "(1 + q2n+1)2f

= 2 V /      g2"+1 . g2"+1      |

„_o 1(1 - <72b+1)2       (1 + q2"*1)2) '

The right hand side of (1) becomes

-      (1 - g«»)« -    (1 - 5*")8       1    4

4? II-r^T " 4? II 7i-777 " "7 **(?)•
„,!   (1 - 94»-2)* n=1 (1 - q*«y       4

Hence we have the identity

oo oo     / „2n+l 02n+I \

E r( (8» + 4)92»+i = 0,(3) = 8 E ly-1-+-}
-o nToUl  - q2^1)2 (1-q^+^f

00 00

= 16 E E (2r + l)g(2»+D(2r+i)>
n—0 r=0

which is equivalent to the known results on sums of four odd squares.

In (1) let us now put x=i and y= —i. The left hand side of (1)
becomes
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Rh„  1(1 - ig«)2      (1 + g")2J

=       i      f f     nn_*g" 2g"    \

4       h 1(1 - ig")2      (1 + iq»)2      (1 H   g»)2/

= _ 1 + y / _     4g2"      ,      2g"    j
"4       £l\     (1 + g2")2      (l + q»)2f

1 » g"
=-2£(-l)»-

4 n-i (1 + g")2

The right hand side of (1) becomes

J_ -   (1 + ig")2(l - ig")2(l - g»)«

4 H (1 - ig")2(l + ig")2(l + q»y

__lfi(i-{-).__1>,
4 nXi (1 - g2*)* 4

Hence we have the identities

(10) 0o4(g) = 1 + 8 £ ;"," = 1 + 8 £ £ (- 1)»+H-V(ri
„_! (1 + g")2 n_! _i

£ r4wgn =»:(?) = e:4,(-g) = 1 + 8 £    f
n-o —1 (l + (~q)ny

OO 00

= l + 8£E(-l)('-u(^1)r-gnr,

n=l r=l

the latter of which is equivalent to the known results on sums of four

squares.

From (9), (10) and (11) we see that

el(q) = et(q) + 62(g),

which is (7) above. The writer is indebted to the referee for this ob-

servation.

4. Turning next to (2), we take a=i. This yields

"   /-4\   m2q2m "   (1 - g2")4(l - g4n)6

hi W1 - q2m ~   1   "     (1 - g8")4

where ( — 4/ra) is the Jacobi symbol. The right member is equal to

-    (1 - g2»)4(l - g<»)8        ,   ,   4   4 4   .,   ,

n ^—7^77—s^= e°{q )d°iq} = Uq )d*{q}-
1    (1 - g4")2(l - g8n)4
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where we have used (3) and (6). We have therefore

" /-4\   m2q2m 4222

(12) 1-4E ( — )—L^ = Uq)03(q).
i   \ m J 1 — q2m

Now take a — qi in (2). We find that the right member becomes

2 (1 - gi)*  '    (1 - g2")8(l - g8")4 = (1 - qi)* 0l(q)el(q) _

1 + q2     i (1 - g*»)« 1 + qi 2q

the left member is equal to

1   (1 - qiy -      nV"
i + -      *. E 7-^-7- i-l(r - (-Dnrn)

q     1 + qi     i    1 - 52b

(1 - qi)3 (q(l + qi) »       «YB 1=   ...    Ay.-- + E "- *n-Kqn - ("1)T")
q(l + qi) 1(1 - qi)*        i    1 - q2n J

(\ _ qiy oo   oo

= 2 Vr^ E E (-i)-1^ - i)y2-i><2B-i>,
3(1 + qi)   i     i

on expanding and combining. Thus we get

,„, .   A  A    .       4S»-1,„ «,2   (2r-l)(2n-I) 4     2N   *     2^
(13) 4EE(-1)     (2n-l)q =00(q)02(q).

i     i

If we divide by q, replace q2 by — q2, we find that (13) becomes

.... ,   ^  ^i    ,       ,S-l,n .N2   (2r-I)(2n-l) 4     2     2     2

(14) 4 E E (-1)     (2« ~ 1) q = 03(q )02(q ).
i     i

Again, if we take a = q112 in (2) and then replace q by q*, we get with-

out much difficulty

€   ,      , (1 - g2)'  "      «YB (1 - <72)' f,-  (1 - <?8")4U - <J4")81 + q~ -2-i -= -" 11 -»
1 + q2     i    1 + qin 1 + q2     i    (1 - ?4")2(1 - g2")4

1 + q2 "      n2q"n 2   2   4

64?2 7^-^7 + 64 ̂  -T-T^T " *»<« )*2(?) =(1 - q2y i    1 + q*n

hence by the second of (6)

1 + q2 "       ny 2   2   4   2

(15)        16?2 m—1^ +16 £ 7\\7r4: = "»«>"«(« >•(1 - q2y i    1 + qin

If we subtract (13) from (14) and use (7), it is evident that
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(i6) *y> = 4 £ £ i<-ir - (-irj(2, - i),3(sr-i><i-i).
i i

Define

Et(n) = Z^V2-    £s'w - 2 (^rV;
d\n\   d   / <fj_n \   rf   /

then the right member of (16) becomes

4  £ gm{£2'(w) - £,(»)}.

m odd

This evidently implies

(17) r,' (2m) = 4 {£,' (») - E2(m)} (m odd).

On the other hand, addition of (12) and (15) gives after some

simplification

CO CO        /_4_\ CO CO        /_A\

et(q) = i + i6SZ(— »¥"r-4EZ       )«Y"r-
i     i   \ r / l     i   \ « /

which implies

(18) r,(n) = l6EI(n) - 4£,(n).

The formulas (17) and (18) are the well-known results of Jacobi on

six squares; the notation is that of Glaisher [4].

We remark that (14) and (15) imply results on the number of

representations in the forms

2222 22 22 2222

4(xi +  X2 + X3 + X4) + Ml + «2,       4(Xi + X2) + Ml + U2 + U% + M4,

where the «< are odd, x,- arbitrary.
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