CONVOLUTIONS WITH RATIONAL KERNELS!
JEROME BLACKMAN

1. The problem. In recent years a great deal of attention has been
paid to the convolution transform.

(1) flu) = fwk(u — z)da(x).

Recently Pollard [2] considered the case k(x) = (1+x2)~! and solved
(1) for a(x) under very weak conditions assuring convergence of the
integral in (1). Our purpose is to treat the case where k(x) is a rational
function. More specifically we shall assume the following five condi-
tions.

(1) k(x)=p(x)/q(x) where p(x) and ¢g(x) are polynomials of degree
p and q respectively. The distance d from the set of zeros of g(x) to
the real axis is positive.

(i) g—p=n2z1.

(iii) K(x) = (2m)~V2[2 k(t)e'='dt>£0 for any real value of x.

(iv) a(x) is locally of bounded variation and «(0)=2"!(a(0+)

+a(0—))=0.
(v) For some u, with | Im (uo)[ <d,
B
lim k(uy — x)da(x)
A B—w —A
exists.

Under these conditions we shall present an inversion formula for
(1). Although our method allows us to treat a wider class of kernels
with shorter proofs, the results are not as elegant as those obtained
by Pollard using operational methods. At present the relation be-
tween his solution and ours in the special case k(x) = (14x2%)~! is not
clear. Our work is not covered by the work of Hirschman and Widder
[1].

It should be noted that once the restriction to rational kernels is
made conditions (i)—(v) are very natural for this problem. Indeed (i),
(iv), and (v), are needed to insure the existence of (1) in a rather weak
sense while (ii) and (iii) are needed to insure the existence of K(x)
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and its nonvanishing. The latter condition is, as is well known, nec-
essary for the uniqueness of the solution of (1).
The results will be contained in three theorems. Let

@) Br() = (2" f s [ (=ipms

-exp (—1y? — iy(s — u))K(y)~'dy,
with £>0 and m=27t+4%+42, and let

3) as) = iy [ exp (= (s = 3)2/4)daly).

Our first result is
THEOREM 1. B(s) =&™ (s).

Once this is known it is necessary to determine &.(s) from its mth
derivative. This is complicated by the fact that the parameter ¢ ap-
pears and we want to know &,(s) for all £>0. That this is possible is
shown in the next theorem.

THEOREM 2. For each t>0 choose a fixed mth integral of BP(s), say
Bi(s). Then there is a unique function p7=(s) where pr=1(s) is a poly-
nomial of degree m —1 for each t, such that

Bi(s) = &ls) + pr (s).

In the proof of Theorem 2 a specific method for constructing
p&~(s) will be given. Once &(s) has been found the solution is con-
tained in our final result.

THEOREM 3. The unique solution of (1) under conditions (i)—(v) s
given by

lim .&,\s)ds = 27(a(s+) + a(s—)).

=0+ J o

2. Proofs of the theorems. We start with two lemmas whose proofs
are easily obtained by slightly modifying the proofs of the analogous
lemmas in [2].

LeMMmA 1.

B
lim k(u — x)da(x)

A,B—w» —A

converges uniformly in every compact subset of | Im (u)| <d.
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LEMMA 2.
a(t) = o(tr).
It follows from Lemma 1 that

4) f9(u) = lim Bk(f)(u — x)da(x) for | Im (u) | < dandj = 0.

Bowo J_y
Also a simple computation shows that
(5) kD (x) = O(] xl‘"") as | x| — o, forj = 0,

and that therefore x*t2k4)(x) EL,. Since (—1y)*K(y) is the Fourier
transform of 29 (x) we can conclude that y*K(y) has n+2 continuous
derivatives.

A simple estimate for the size of K(x) can be obtained by observing
that the integral of (iii) can always be evaluated by contour integra-
tion from which it follows that

> > ciad exp (3:%) for x = 0,
2 2 cijxd exp (zix) for x < 0,

where the summations are over a finite number of terms only. Using
this and (iii) it follows that for some ¢; and c,.

K(x) = {

| K| 2 ciexp (] x])
so that
y™exp (—ty)K(y)' € Ly

for every t>0 and all m=0.
For what follows we need the inequality

S (14 ur])

(6) lfdk(f)(u — x)da(x)
-4

for some ¢ independent of 4 and all j >0. If we integrate by parts and
use Lemma 2 and (5) we find

l Ak"')(u — x)da(x) | < cA™(1 + [ u— A |"+’)‘1

—A

(M -
+ A1+ |u+ A | )14+ af xv(1 4 | — x|mHin)-1dy,

—0

Letting # —4 =t, we have
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| A™(1+ (u— 4 l"+")“‘| =< sup C3| " — t!"(l + | t| kit
1)

Sciur+cf .

The second term in (7) is treated the same way and a change of vari-
able in the integral on the right of (7) shows that essentially the same
inequality holds thereby proving (6).

If we now combine (2) and (4) we see that

© A
B7(s) = (2m)"" f aulim [ 5O — 2)da(a)
—0 —® —A

(8) -
. f (—iy)™*K(y)"  exp (—ty* — iy(s — u))dy.

A direct estimate shows that since y*K(y) has #42 continuous de-
rivatives,

(—1iy)™4K(y)! exp (—1y?)

has #+42 derivatives all in L;. Therefore the innermost integral in (8)
is O(Is—ul"'"). Using (6) we see that the outer integral in (8) is
uniformly convergent in 4 so that we may interchange the limit on 4
and the outer integral.

Since the inner integral is O(
tional function which is O(|u —x

fﬂodul D (4 — 1) |

s—u]"”"’) and k®(u—x) is a ra-
—»—4) we conclude that

f (= i) ™K (5)~ exp (—ty? — iy(s — w)dy

converges and is a continuous function of x. By Fubini's theorem the
order of the outer two integrations in (8) may be interchanged so that

A 0
o) = @) iim [ dex) f EO(u — 5)du
R -

i) exp (—tyt — ints — )iy,

A trivial estimate now shows that the inner two integrals may be
interchanged yielding

. f (—iy)™ 4K (y)™ exp (—ty? — iys)dyf EW(u — x)etvedu.
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Since

(2m)t2 f EW (4 — x)etvedu

= e‘”’(21r)“/2f kW (u)eividy = e'vi(—iy)4K(y),

we conclude that

B:n(s) = (Zw)_lf da(x)f (—iy)™exp (—ty* 4+ iy(x — s))dy

© dm (S —_ x)2 (m)
= (41rt)“1“f y exp[— " ]da(x) =a (s5),
e ds™

which is the statement of Theorem 1.

We now turn to Theorem 2. If we choose 8.(s), a particular mth
integral of B8(s) for each ¢, then we know that this 8,(s) must differ
from a,(s) by at most a polynomial of degree m —1. Call this poly-
nomial p/~!(s) and consider the equation

m—1

9) as) = Bi(s) — pe (5).

Our problem is to find the function p~!(s) for all ¢ (or at least for a
sequence t,—0+). Let

(10) ) = G [ exp (= (= w40 )
Then from (4)
H() = ey [ 7 exp (= (y = wr/40du

B
- lim k' (s)d,a(u — s).

A,B—w —4

As in the proof of (6) the convergence of the outer integral is uniform
in 4 and B so that

B ©
Hyy) = Alligm k’(s)d‘(41rt)‘”2f exp (—(y — w)¥/4t)a(u — s)du
i —A —w
B
= lim k' (s)ds(4mt)—1/2
A ,B—w —A

. f ° i exp (—(y — s — vu)2/4)a(v)do.
—w ds
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If we first integrate the inner integral by parts and then the outer
one we obtain

B
lim k(s)d.al(y — )
A,B— —A

H(y)
(11)

B
lim k(y — s)da(s).

A,B—w» —A
It follows that the limits in (11) exist and, in fact, that all the condi-
tions necessary for the proof of Lemma 1 now also hold for &:(s) so
that a;(s) =o(s”) for each ¢>0. If this result is combined with (9)
it is clear that at least the higher powers in p*~!(s) are uniquely de-
termined. If we write

(12) 20N = e ) + X cls
J=n

then in order for (9) and &.(s) =o(s") to be satisfied the ¢} must be
determined by

lim s~™B(s) = ct,

0
lim s_mH[ﬁ,(s) —cs = c:”_l, etc.
Now let
(13) Bi(s) = Buls) — 2 cis”
j=n
so that

als) = Bus) — 97 (s).
Substitute this in (11) to obtain

19 HO) = [ Ky - 980 - ) “ky — 9dpi o).

Since k(y) =0(| y[ —) the second of these integrals exists so that the
first one does also. Moreover since H,(y) is determined by the defini-
tion (10) and B.(s) is determined from (13), equation (14) is in effect
an equation for [k(y —s)dp;~'(s) which is a polynomial of degree not
greater than #—2. This means that

70 - [ “ky —1)dBs)
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is a known polynomial of degree not greater than #n—2. Therefore
the coefficients of the polynomial

a5 [Tk = 9al ' = T il [ ranty = wy-sau

i=1

are uniquely determined. It is clear from the right side of (15) that
this determines the ¢} uniquely. Theorem 2 is therefore complete.
The last theorem follows almost immediately. Once

auls) = Bus) — pr (s) = (4m) f " exp (— (u — $)*/4f)da(u)

—00

is known a(%) can easily be found. Integrating by parts and then
integrating from 0 to s we find

fudt(s)ds = (41rt)—”2{f°° exp (—(u — s5)*/4t)a(u)du

— f exp (—u2/4t)a(u)du}.
From this one concludes in the usual way that
lim als)ds = 2Ya(s+) + als—))—a(0)=2"Ya(s+)+a(s—)).

-0+ J o
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