
CONVOLUTIONS WITH RATIONAL KERNELS1

JEROME BLACKMAN

1. The problem. In recent years a great deal of attention has been

paid to the convolution transform.

(1) /(«) =   f   k(u- x)da(x).
J -X

Recently Pollard [2] considered the case k(x) = (l+x2)-1 and solved

(1) for a(x) under very weak conditions assuring convergence of the

integral in (1). Our purpose is to treat the case where k(x) is a rational

function. More specifically we shall assume the following five condi-

tions.

(i) k(x) =p(x)/q(x) where p(x) and g(x) are polynomials of degree

p and q respectively. The distance d from the set of zeros of q(x) to

the real axis is positive.

(ii) q — p=n^l.

(iii) K(x) = (2ir)-U2fla,k(t)eixtdt^0 for any real value of x.

(iv) a(x) is locally of bounded variation and a(0) =2-I(a(0-(-)

+a(0-))=0.

(v) For some «0 with | Im (m0)| <d,

lim     f     k(u0 — x)da(x)
A,B->°°   J-A

exists.

Under these conditions we shall present an inversion formula for

(1). Although our method allows us to treat a wider class of kernels

with shorter proofs, the results are not as elegant as those obtained

by Pollard using operational methods. At present the relation be-

tween his solution and ours in the special case k(x) = (1 +x2)-1 is not

clear. Our work is not covered by the work of Hirschman and Widder

[1].
It should be noted that once the restriction to rational kernels is

made conditions (i)-(v) are very natural for this problem. Indeed (i),

(iv), and (v), are needed to insure the existence of (1) in a rather weak

sense while (ii) and (iii) are needed to insure the existence of K(x)
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and its nonvanishing. The latter condition is, as is well known, nec-

essary for the uniqueness of the solution of (1).

The results will be contained in three theorems. Let

(2) /srW = (2tt)~3/2 Cf^(u)du ["(-iy)-'
J -oo J -oo

•exp ( — ty2 — iy(s — u))K(y)~ldy,

with />0 and m = 2n+A+n + 2, and let

(3) «,(*) = (4*/)-1'2 f    exp (-(s - y)2/4t)da(y).
J-oo

Our first result is

Theorem 1. ff?(s) = a\m\s).

Once this is known it is necessary to determine at(s) from its wth

derivative. This is complicated by the fact that the parameter / ap-

pears and we want to know at(s) for all />0. That this is possible is

shown in the next theorem.

Theorem 2. For each t>0 choose a fixed mth integral of /3S"(.s), say

@t(s). Then there is a unique function p?^^) where p?'~1(s) is a poly-

nomial of degree m — l for each t, such that

P,(s) = at(s) + p7'\s).

In the proof of Theorem 2 a specific method for constructing

pF~l(s) will be given. Once at(s) has been found the solution is con-

tained in our final result.

Theorem 3. The unique solution of (1) under conditions (i)-(v) is

given by

lim    f &tKs)ds = 2~1(a(s+) + a(s-)).
t~o+ J o

2. Proofs of the theorems. We start with two lemmas whose proofs

are easily obtained by slightly modifying the proofs of the analogous

lemmas in [2].

Lemma 1.

CB
lim     I     k(u — x)da(x)

a,b-»« J-A

converges uniformly in every compact subset of \ Im (u)\ <d.



102 JEROME BLACKMAN [February

Lemma 2.

a(t) = o(tn).

It follows from Lemma 1 that

(4) fU)(u) =    lim ¥'\u — x)da(x) for | Im (u) \   < d and/ ^ 0.
A,B-»»   «/_,i

Also a simple computation shows that

(5) &(l,(x) = 0(| x|-n-J) as   | x| —> oo, for/ ^ 0,

and that therefore xn+2£(4)(x)G7i- Since ( — iy)iK(y) is the Fourier

transform of kw(x) we can conclude that yiK(y) has w + 2 continuous

derivatives.

A simple estimate for the size of K(x) can be obtained by observing

that the integral of (iii) can always be evaluated by contour integra-

tion from which it follows that

„, ( 2~1Y1 CijX> exp (zix) for x ^ 0,

I E E c'iJx' exp (z'iX) for x < 0,

where the summations are over a finite number of terms only. Using

this and (iii) it follows that for some Ci and c2.

| K(x) |   ^ Ci exp (c2\ x | )

so that

y">exp(-ty2)K(y)-1ELi

for every OO and all m^0.

For what follows we need the inequality

(6) I     k<-»(u - x)da(x)   g c(l +  | u"\ )
\J -A

for some c independent of A and all/^0. If we integrate by parts and

use Lemma 2 and (5) we find

/a £<>'>(« - x)da(x)   ^ c3An(l +  | u - A l^+'y1
-A

+ c34"(l + | m + A | "+0_1 + c* f    xn(l + | u - x !"+'+1)-^x.
J -00

Letting u— A =t. we have
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| CtAn(l + \u - A |»+»)-i |   g sup c31 u - 11"(1 + | /1 )-"-'
i

g  C{un + C3   .

The second term in (7) is treated the same way and a change of vari-

able in the integral on the right of (7) shows that essentially the same

inequality holds thereby proving (6).

If we now combine (2) and (4) we see that

&(s) = (2ir)~m f   du lim    f   k«\u - x)da(x)
J _oo        A->«>    J-A

■   I     ( — iy)m~iK(y)~1exp ( — ty2 — iy(s — u))dy.
J -a,

A direct estimate shows that since y*K(y) has n+2 continuous de-

rivatives,

(_iy)^-iK(y)-1 exp (-ty2)

has n+2 derivatives all in L\. Therefore the innermost integral in (8)

is 0(\s—u\~n~2). Using (6) we see that the outer integral in (8) is

uniformly convergent in A so that we may interchange the limit on A

and the outer integral.

Since the inner integral is 0( s — w|-n-2) and kw(u — x) is a ra-

tional function which is 0(| w— x ~n~*) we conclude that

/oo |       *% CO
du | ft<»(« - x) |    J    (-iy)™-4^)-1 exp (-ty2 - iy(s - u))dy

-00 I  "   —00

converges and is a continuous function of x. By Fubini's theorem the

order of the outer two integrations in (8) may be interchanged so that

$7(s) = (2ir)~3lilim   f  da(x) f   £«>(« - x)du
A-kx>    J —A J — 00

/• oo

•   I     (_ iy)m^iK(y)~1 exp (—ty"1 — iy(s — u))dy.
J -oo

A trivial estimate now shows that the inner two integrals may be

interchanged yielding

p7(s) = (2ir)~il% lim    j     da(x)
A-*oo   J —a

/« f 00( — iy) "-♦KXy)-1 exp ( — ty2 — iys)dy I     £<*>(« — x)eiyudu.
"CO J -00
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Since

(2*)-1'2 f   *")(« - x)ei*>du
J -00

-= e''"1(2ir)-1/2 f   k^(u)e^udu = e'"I(-iy)4A'(y),
•*   -OO

we conclude that

P7(s) = (27r)_1 I     da(x)  J     (-iy)mexp (-<y2 + iy(x - s))dy
J -00 «J -OO

/oo ^ra       r   (j_x)2~i

— exp   -^—— \da(x) = «;"(«),
-„   <fcm              L                 it J

which is the statement of Theorem 1.

We now turn to Theorem 2. If we choose Pt(s), a particular ?wth

integral of P?(s) for each t, then we know that this Pt(s) must differ

from at(s) by at most a polynomial of degree m — 1. Call this poly-

nomial pr~l(s) and consider the equation

(9) &t(s) = p,(s) - p7~\s).

Our problem is to find the function p!>~1(s) for all / (or at least for a

sequence t„—»0 + ). Let

(10) Ht(y) = (4*/)-1'* f    exp (-(y - u)2/\t)f'(u)du.

Then from (4)

Et(y) = (4ir/)-1/2 f " exp (-(y - u)2/4t)du
J -00

•   lim    I     k'(s)daa(u — s).
A.B-.1 J -A

As in the proof of (6) the convergence of the outer integral is uniform

in A and B so that

/B /* oo

k'(s)da(Airt)-1i2 j     exp (-(y - u)2/4l)a(u - s)du
-A J -a

-   lim     f   fc'M^*-/)-1'2

J00 d
— exp ( — (y — s — vu)2/4t)a(v)dv.



i957l CONVOLUTIONS WITH RATIONAL KERNELS 105

If we first integrate the inner integral by parts and then the outer

one we obtain

Ht(y) =   lim     I    k(s)d,at(y — s)
A,fl->»   J-A

(11)

=    lim     I     k(y — s)dat(s).
A ,s-»» J _A

It follows that the limits in (11) exist and, in fact, that all the condi-

tions necessary for the proof of Lemma 1 now also hold for at(s) so

that at(s) = o(s") for each t>0. If this result is combined with (9)

it is clear that at least the higher powers in pf~l(s) are uniquely de-

termined. If we write

(12) p7~ (s) = p7 (s) + £ els',
j-n

then in order for (9) and at(s)=o(sn) to be satisfied the c\ must be

determined by

lim s-mpt(s) = c7,
t—► «>

—m+lr m  m^ m-1

lira s       [pas) — cts J = Ct    , etc.
8—♦«

Now let

(13) ft(j) = Ms) - £ cts
j=n

so that

a,(s) = (Itis) - pnt'\s).

Substitute this in (11) to obtain

(14) Ht(y) =   fk(y - s)d^(s) -  f"\(y - s)dpT\s).
J -oo J -co

Since k(y) =0(|y|~") the second of these integrals exists so that the

first one does also. Moreover since Ht(y) is determined by the defini-

tion (10) and pt(s) is determined from (13), equation (14) is in effect

an equation for fk(y—s)dp"~1(s) which is a polynomial of degree not

greater than n — 2. This means that

Ht(y)- f~Ky-h)dfi,(s)
J -00
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is a known polynomial of degree not greater than n — 2. Therefore

the coefficients of the polynomial

(15) f   k(y - s)dp"~\s) = "2Zjc< f   *(«)(> - «)*-,A»
J —oo y=i      J —oo

are uniquely determined. It is clear from the right side of (15) that

this determines the c\ uniquely. Theorem 2 is therefore complete.

The last theorem follows almost immediately. Once

exp(-(u- s)2/it)da(u)
-00

is known a(u) can easily be found. Integrating by parts and then

integrating from 0 to s we find

f  at(s)ds =  (4ir(r1/2 j  f     exp (-(« - s)2/4t)a(u)du

—   I      exp ( — u2/At)a(u)du> .

From this one concludes in the usual way that

lim    f a,(s)ds  =   2-1(a(s+)  +  a(s-))-a(0) =2~-1(a(s+)+a(s-)).
«-H)+  Jo
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