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This note is a contribution to the study of the subalgebras of the

space C(S) of complex-valued continuous functions on a compact

Hausdorff space 5. We are interested here in finding conditions under

which an algebra has maximal ideals other than the obvious ones

corresponding to the points of S. We shall restrict ourselves to the

case where 5 is a circle or an interval and shall give two sets of

hypotheses under which other maximal ideals do exist.

Both theorems depend on deep results about algebras of functions.

The first is really a corollary of the theorem of Mergelyan and others

which states that on any compact set E in the plane, of plane measure

zero, an arbitrary continuous function can be uniformly approxi-

mated by rational functions having their poles outside E. We are

presenting Theorem 1 mainly because its corollary is a statement

about polynomials in several complex variables which seems to be

new, and which we think is curious.

Theorem 2 depends less obviously on the theorem of Silov asserting

the existence of idempotents corresponding to the open-closed subsets

of the structure space of a commutative Banach algebra. Our theorem

is of Stone-Weierstrass type; it states, under hypotheses, that a given

algebra either has many maximal ideals or else contains all continuous

functions.

Let SI be a closed subalgebra of C(S), and let 2ft be the collection

of functions in 31 which vanish at a given point of S. Either 9JJ is all

of 31, or 9J2 is a maximal ideal in 31, in which case we say that ffi is

associated with the given point. If 9J2 is a maximal ideal which is not

of this form, we say that it is not associated with any point of S. We

can now state our first theorem.

Theorem 1. Let S be a circle or a closed interval, and let %.bea proper

closed subalgebra of C(S) which contains scalars and separates points.

Suppose SI contains a subset which separates points, and which has the

property that each of its functions maps S onto a plane set of Lebesgue

measure zero. Then 31 has maximal ideals not associated with points of S.

Suppose, on the contrary, that all the maximal ideals of 31 are

associated with points of S. Then, if <p belongs to 31 and does not

vanish on S, 4> has an inverse in 31. More generally, if <j> is in 31, and
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P is a rational function such that R(<f>) is continuous, then R(<p) is

in 21. Suppose <p is one of the functions in 21 which map S onto a plane

set of measure zero, and denote the image of S under <p by E. It is

known [2 ] that every continuous function on E can be approximated

uniformly by rational functions with poles outside E. Hence for any

continuous function / defined on E, f(<j>) can be uniformly approxi-

mated by functions R(<j>) belonging to 21, and sof(<p) itself belongs to

21. Now by hypothesis we can separate any pair of distinct points p

and 5 in 5 by a function <j> whose image is a null-set; and <f>(p)

and <p(q) can be separated by a real continuous function/. Thus the

real functions f(<p) in 21 separate points on S, and 21 must contain all

continuous functions by the Stone-Weierstrass Theorem.

Corollary. Let T be a differentiable arc or closed curve in the space

of n complex variables. Either every continuous function on T can be

approximated uniformly by polynomials in n complex variables, or

there is a point q in the space outside T such that \ P(q) | ^sup„g=r | P(u) \

for every polynomial P.

Indeed, we can take for 21 the continuous functions on T which are

the uniform limits of polynomials. Clearly every polynomial maps V

onto a compact set of measure zero in the plane, and the polynomials

separate points on T as well. So the theorem applies, and either 21

coincides with C(r), or 21 has maximal ideals not associated with

points of r. Let the coordinates of the space be Zi, • ■ ■ , z„; the zj are

elements of 21 when considered as functions on T. A homomorphism of

21 (determined by a maximal ideal) carries the Zj into complex con-

stants qf, and since the Zy are a set of generators for 21, the homo-

morphism carries an arbitrary function 0 in 21 into the number

<t>(qi, • ■ • , <Zn)- Consequently, if the maximal ideal is not associated

with a point of T, then q=(qi, ■ ■ ■ , qn) does not lie on T. From the

general principles of Banach algebras we know that \<l>(qi, • ■ ■ , qn)\

^||(/>|| =supu(=r |<£(w)|, and this is what we had to prove.

Theorem 1 and its corollary are very primitive; we have no idea

what the situation is when the functions in 21 are all space-filling

curves. It is quite possible that the corollary remains true without

any hypotheses on the smoothness of the embedding.

Theorem 2. Let Sbea circle or a closed interval, and let %bea proper

closed subalgebra of C(S) which contains scalars and separates points.

Assume moreover that 21 contains a function e**, where <j> assumes real

values and is constant on no subinterval of S. Then 21 has maximal ideals

which are not associated with points of S.
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If we make the special assumption that <j> is an increasing function,

then (as Dr. J. Wermer has pointed out to us) the theorem is a corol-

lary of the generalized Stone-Weierstrass Theorem of Silov [3]. In-

deed, e'* assumes a given value on a certain finite set of points of S,

and for each such finite set there is a function of 31 assuming pre-

scribed values at each point. (Since 31 separates points, it is not diffi-

cult to construct such a function in 31.) If 31 had no maximal ideals

except those associated with points of S, then 31 would contain /(e**)

for every continuous function / defined on the circle. Silov's theorem

implies then that SI contains all continuous functions on S, contrary

to hypothesis. In fact, by an additional argument we can prove that

one of the maximal ideals of 31 contains e'* itself. All this generalizes

part of a theorem of Wermer [5], which characterizes the algebras

31 on the circle which are generated by e2ix and one other function.

Wermer shows that the functions of 31 can be extended to the points

of a Riemann surface bounded by S, and he describes the surface.

The maximal ideals of 31 are the points of 5 and the Riemann surface.

We can assert without any condition of finite generation, and with

emx (w = 2, 3, • • • ) in place of e2ix, that 31 has maximal ideals in

addition to the points of 5. We do not know what conditions are

necessary in order that the space of maximal ideals should be a Rie-

mann surface.

The situation is less simple if e{* assumes a constant value on an

infinite set. We shall prove Theorem 2 by contradiction, assuming

that 31 has no maximal ideals except those associated with points of

5. Then e** belongs to no maximal ideal, and so e""* belongs to 31 for

all integers n. Therefore any finite sum of the form Egng'"* belongs

to 31; since any continuous periodic function is the uniform limit of

trigonometric polynomials, g(ei*) belongs to 31 if g is continuous on

the circle.

Let n be an arbitrary Borel measure on S whose integral with every

function of 31 vanishes. Denote by xi the characteristic function of a

closed arc 7 on the circle, and by Er the set of points in 5 which es*

maps into 7. Let /„ be a sequence of continuous functions on the

circle decreasing to xi- Using the fact that /„(e'*) belongs to St for

each n, we have for any \p in 31

J   $dn= J fxiie*)*? = lim J tMe^dn = 0.

That is to say, whenever n is orthogonal to all the functions of 31,

the same is true of that part of ju concentrated on Ei.

Now form the algebra 93 of functions defined and continuous on



118 HENRY HELSON AND FRANK QUIGLEY [February

Ei, which can be approximated uniformly on Ei by functions in 21;

23 is a closed subalgebra of C(Ei) which contains scalars and separates

points on Ei. The points of Ei determine distinct maximal ideals of

23; we assert that all the maximal ideals are of this type. In fact, let

F be a nontrivial homomorphism of 23 into the complex numbers.

Since the functions of 23 are the limits on Ei of functions of 21, P is

defined (and obviously continuous) on a homomorphic image of 21,

and is still not the zero homomorphism. Thus F determines a homo-

morphism of 21 into the complex numbers, which by hypothesis has

the form F\>f/]=\f/(p) (^G2I) for some fixed p in S. Since F has
bound 1 as a functional on 23, we have | F[^]| = |^(£)|

^supxgEj I'r'Wl • If P is not in Ei, find a continuous function g on

the circle which vanishes on / but not at e#(p). Then g(ei*) belongs

to 21 and vanishes on Ei but not at p. The last inequality is therefore

not true for all \p in 21. So we conclude that p belongs to £/, and that

the functional F on 23 is given by F]}p] =^(p)(ipC^&)- Thus all the

maximal ideals of 23 are associated with points of Ei.

Returning to the measure p., we know that the restriction of p. to

Ei is orthogonal to all the functions of 21. Since these functions are

dense in 23, it follows that x«/^M 1S orthogonal to the functions of 23.

Now we apply a theorem of Silov [4], which asserts that 23 contains

the characteristic function of each subset of its structure space which

is open and closed. That is, if D is a subset of Ei which is open and

closed in Ej, then for any function \p of 23 we have fr>^dp = 0. The

same equation holds a fortiori if ^ is defined on all of S and belongs

to 21. So the restriction of p. to any open-closed subset of Pr is orthog-

onal to all the functions of 21.

Let p and q be distinct points of S. We shall find a real function in

21 taking different values at the two points. If <j>(p) —<t>(q) is not a

multiple of 2w, then there is a real function / on the circle such that

/(e**) separates p and q; otherwise, at least <j> is not constant on the

interval between p and q. We can find a closed arc J on the circle

containing e**(j>) in its interior such that p and q do not lie in a con-

nected subset of Ei. Let/ be continuous on the circle, vanishing out-

side I, but not at e**(p). Then /(e{*) belongs to 21, and vanishes out-

side Ei. Let D be an open-closed subset of Ei containing p but not q.

Then xz>/(ei*) is continuous and separates p and q; moreover, for

each measure p. orthogonal to 21 it is clear that fDf(ei*)dp, = 0, by what

we have already proved. So Xb/(«'*) belongs to 21, and separates p

and q as required.

Since the real functions of 21 separate points on S, the Stone-

Weierstrass Theorem asserts that every continuous function belongs
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to 31. This is contrary to the assumption that SI is a proper subalgebra

of C(S); therefore the maximal ideals of 31 cannot all be associated

with points of 5, and the theorem is proved.

As a corollary, we observe that if 31 is an integral domain and a

maximal subalgebra of C(S), where S is a circle or an interval, and

if 31 contains a nonconstant function of modulus one, then 31 has

maximal ideals which are not associated with points of 5. For we

have proved [l ] that any function of 31 which is constant on an inter-

val is everywhere constant, so Theorem 2 applies.
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