
A NOTE ON THE COMPOSITENESS OF NUMBERS

A. W. ADDISON

The "compositeness" of the number n=pTp? • • • PZm is defined

by £2(») =<xi+a2+ ■ ■ • +ocm. Ii the integers be partitioned into two

classes Ea and Ei according to whether Q(n)=0, 1 (mod 2), and

-Eo(x), .Ei(x) be the corresponding counting functions, it follows that

Ei(x) = (x/2)+error. The error is 0(x exp [ —a(log x)1/2]) certainly,

and on the Riemann hypothesis is 0(xll2+t). This becomes evident

when one considers f(2j)/f(s), which is the generating function for

E0(x)-Ei(x).

However, there is no "analogy" on the "error term" if the parti-

tioning follow the residues of a number larger than 2, as we shall show.

In fact, we shall establish the following

Theorem. If for any q^3 we partition the integers into q classes

{Gq.i}, (i = 0, 1, • • • , q — 1), according to whether fl(w)=0, 1, • • • ,

q — l (mod q) and let Cq,i(x) be the corresponding counting functions, it

follows that

Cq,i(x) - x/q = fi±(x/logr x),

(i — 0, 1, • - • , q — l), where r = l— cos (2ir/q).

The leading term x/q, with error of o(x), has already been estab-

lished by several investigators [l; 2 ] who made use only of elementary

(non "complex-variable") arguments.

Specifically, we shall here actually compute the remainder term for

q = 3. For larger values the computation is more complicated only

with respect to notation, and we shall merely state the result.

Write «i = exp (2wi/3) = (-l/2)+i(3xl2/2), and co2 = w?. Define

so that

J        /» 2+iw xt

Ci.oO) + m,C,,iC» + w2C3,s(x) = ■—: I        F(s) — ds,
2irl J 2—iK S

where of course Cauchy mean value is understood. We shall show that

F(s) has an algebraic singularity at 5 = 1, and behaves somewhat like

(s — l)-"i in the neighborhood of that point. To this effect, expand
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the logarithm of F(s) and group the terms according to the coefficients

Wi, w2, 1. Then from

1          «    n(n)
2., — = 2_, -l°g tins)
V     P' n-1      n

it will follow that log F(s) =ai log f(5)+log g(s) where log g(s) is

regular   and   bounded   in   absolute  value  for  <r^l/2 + e.   So   F(s)

= (t(s))"'g(s); g(s)^0 for o^l/2 + €.Writef(s) = F(s)/s= (s-l)-^h(s)

and note that h(s) is regular and bounded in absolute value in the

neighborhood of 5 = 1. Further, h(s) does not vanish in this region.

Thus

h(s) = ko+ *x(l -*)+•'• + *.(1 - *)n + • • • (*o ^ 0),

valid for | 1 —s\ tk 1 —a.

Our problem is thus reduced to something similar to that of esti-

mating the number of integers which are the sum of two squares [3].

Run the contour of integration from 2—i& to 1—a^l/2 + e, follow-

ing the path <r = l —(a/log (e+|/|)). From 1—a, run to 1—rj, then

on the circle of radius 77 about the point 5 = 1, then from 1 — 77, back

to 1 —a, and from there to 2+ioo. Now this integral (except for the

parts running along the real axis and about 5 = 1) is

0(x exp [ —a(log x)112]) certainly, and on the Riemann hypothesis is

0(xll2+t). For the rest, consider the first term of our integral

£0   r1"'
-; I       (5 — l)-"'xs(f5.
2triJ i_„

Factor out ( —l)"""' from (5 — l)~"i and make the substitution

t = (1 — 5) log x. For 77 = 0 this is equal to

K(-l)-^        x
—-+ 0(x1~a+')

2iri (log x)1-"1

= k" /,     "N1   expfiV1^1^^ + 0(x1-a+'),
(log x)%12       \    2 /

where k0', ka" t*0.

The integral taken about the point 5 = 1 goes to zero with 77, but

upon returning to the point 1 —77 a new factor 9^-1 now multiplies the

integrand. Thus the integral returning along the real axis merely

changes the constant ko' to, say, mo^O.

Repeating for the other terms in (1 —5)" in the series we obtain the

asymptotic expansion
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x       (      / 31'2 M (mi mn \
-< exp I i-log log x J > I m0 -\-\- • • • -\-h • • •  J.
(log*)3'2!   *A    2 //\ logx log"x /

To isolate the function C3,o(x), for example, write

This will yield an asymptotic expansion identical with the above,

except for a replacement of the constants m,- by ra,- (their complex

conjugates) and a replacement of i by — i in the exponent of e.

The function G(s) is the generating function for C3,o(x)+oi2Cz,i(x)

+wiC3,2(x). Thus F(s)+G(s) is the generating function for 3C3,o(x)

— [x]. Thus

.{(„(^h.i».))(*+ji+...+st-+...)

-(^hfhi.))(i,+i±-+...+iA_+...)}

where aj+ibj = 2mjr*0.

For g>3 the analogous computations yield

qCq,o(x)   —   X

[(?-d/2]       x       ( / an \
~     Z)    7,-— i (cos (i>y log log x)) I aoj + —- +       •  )

,_i     (log x)r> (. \ logx /

- (sin (vj log log x)) f b0j + ~- + ■ ■ ■ )>

where ry = 1 — cos (2irj/q); v, — sin (2irj/q); and at least one of the

numbers a0i, boi is different from zero. This establishes our theorem.

For completeness, we mention the other measure of "composite-

ness" in use. If n=pt'p21 ■ ■ ■ p%", (at>0) we could also define 12*(w)

= m, that is to say the number of distinct primes dividing n, not count-

ing multiplicity. It suffices to consider the generating functions

and
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7(5) = n(i + -^-)

which will yield a similar formula for g = 3. The general case likewise

holds.

Finally we mention the "square-free" case. The square-frees are

counted by the function Q(x). Partition them into three classes Q3,0,

Q3.1, 03,2, etc. Here it suffices to note that

p\        P')      G(2s)

and

where F and G are defined as before. This again leads to a similar

formula, with x/3 replaced by Q(x)/3. The general case likewise

holds.
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