A NOTE ON THE COMPOSITENESS OF NUMBERS
A. W. ADDISON

The “compositeness” of the number n=p1pg? - - - pp~ is defined
by Q(r) =a1+as+ - - - +an. If the integers be partitioned into two
classes Eo and E; according to whether @(z)=0, 1 (mod 2), and
Ey(x), Ei(x) be the corresponding counting functions, it follows that
E;(x) = (x/2)+error. The error is O(x exp [—a(log x)V/2]) certainly,
and on the Riemann hypothesis is O(x'/?*¢). This becomes evident
when one considers {(2s)/¢(s), which is the generating function for
Eo(x) —El(x)

However, there is no “analogy” on the “error term” if the parti-
tioning follow the residues of a number larger than 2, as we shall show.
In fact, we shall establish the following

THEOREM. If for any q=3 we partition the integers into q classes
{C.,,.-}, (z=0,1, .., g—1), according to whether Q(n)=0, 1, - - -,
g—1 (mod q) and let C,,i(x) be the corresponding counting functions, it
follows that

Coi(%) — x/9 = Qu(x/log" ),
(#=0,1,---,qg—1), where r=1—cos (27/q).

The leading term x/q, with error of o(x), has already been estab-
lished by several investigators [1; 2] who made use only of elementary
(non “complex-variable”) arguments.

Specifically, we shall here actually compute the remainder term for
g=23. For larger values the computation is more complicated only
with respect to notation, and we shall merely state the result.

Write wi=exp (271/3) = (—1/2)+14(3%/2/2), and w;=w?. Define

Fs) = II (1 - -‘1’—‘)_1

» p*
so that
1 2+ 400 I
Ca,o(x) + w1C3,1(x) + w2C3,¢(x) = — F(S) —_ dS,
2w 2 i s

where of course Cauchy mean valueis understood. We shall show that
F(s) has an algebraic singularity at s=1, and behaves somewhat like
(s—1)=%r in the neighborhood of that point. To this effect, expand
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the logarithm of F(s) and group the terms according to the coefficients
w1, wz, 1. Then from

00

= wln) log ¢(ns)

1
P‘ n=1 7

2

it will follow that log F(s) =w; log {(s)+log g(s) where log g(s) is
regular and bounded in absolute value for ¢=1/2+e So F(s)
=(¢(s))g(s); g(s)#£0 forc =1/2+e€. Write f(s) = F(s) /s= (s —1)7*1h(s)
and note that k(s) is regular and bounded in absolute value in the
neighborhood of s=1. Further, k(s) does not vanish in this region.
Thus

h(s) = ko+ ki1 =)+ -+ k(1 — )"+ - -- (ko 7 0),

valid for l 1—s| £l—a.

Our problem is thus reduced to something similar to that of esti-
mating the number of integers which are the sum of two squares [3].
Run the contour of integration from 2—4© to 1—a=1/2+¢, follow-
ing the path o =1—(a/log (e+|tl)). From 1 —g, run to 1 —7, then
on the circle of radius  about the point s=1, then from 1—7, back
to 1 —a, and from there to 2+7o. Now this integral (except for the
parts running along the real axis and about s=1) s
O(x exp [—a(log x)¥/2]) certainly, and on the Riemann hypothesis is

O(xY**¢), For the rest, consider the first term of our integral
ko 1—
21!'1: 1—a

n
(s — 1)~@1x%ds.

Factor out (—1)~: from (s—1)~“: and make the substitution
t=(1—s) log x. For n=0 this is equal to

kj(—1)—« x
27 (log x)t—e1

+ O(at=e+)

x
= It

31/2
o — , — log log x O(xt—te),
" log xwzexp(t 5 loglog )+ (2177%9)

where E{, kJ’ #0.

The integral taken about the point s=1 goes to zero with 5, but
upon returning to the point 1 —7 a new factor #1 now multiplies the
integrand. Thus the integral returning along the real axis merely
changes the constant k¢’ to, say, m0.

Repeating for the other terms in (1 —s)* in the series we obtain the
asymptotic expansion
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L ('31/21 I )}( L T )
(log x)m{eXP z 2 0808 o log x log™ x )

To isolate the function Cj,0(x), for example, write

o -1(-5)

This will yield an asymptotic expansion identical with the above,
except for a replacement of the constants m; by #; (their complex
conjugates) and a replacement of 2 by —7 in the exponent of e.

The function G(s) is the generating function for Cs,o(x) +w:C3,1(x)
4 wiCs,2(x). Thus F(s)+G(s) is the generating function for 3Cs,o(x)
—[x]. Thus

x
(log x)*/

312 a; e
- 4| cos { — log log « ao + + -+ + -
2 log % log™ x
3172 b bn
— { sin { — log log = bo + + -+ + -
2 log log™

where a;+1b; =2m; 0.
For ¢>3 the analogous computations yield

3C3,o(x) —_— X v

gCqn(x) —
[(g—1)/2] x o
~ ‘{(cos (vjlog log x)) (aoj + + ... )
i=1  (log x)ri log x
. bi;
— (sin (v; log log x)) { bo; + 4+ e
log «

where r;=1—cos (2mj/q); v;=sin (2wj/q); and at least one of the
numbers ag, bo; is different from zero. This establishes our theorem.

For completeness, we mention the other measure of “composite-
ness” in use. If n=p71p5? - - - ppm, (@,>0) we could also define Q*(n)
=m, that is to say the number of distinct primes dividing #, not count-
ing multiplicity. It suffices to consider the generating functions

H(s) = H(1+ - )

? ]J‘-—l

and
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10 = T (1+ 2 )

? P — 1
which will yield a similar formula for ¢=3. The general case likewise
holds.
Finally we mention the “square-free” case. The square-frees are
counted by the function Q(x). Partition them into three classes Qs,o,
Q3.1, Qs,2, etc. Here it suffices to note that

111+ - 29

; ») "~ G(2s)

and

I ( 14 _og) _ 6
P ?° F(2s)
where F and G are defined as before. This again leads to a similar
formula, with x/3 replaced by Q(x)/3. The general case likewise
holds.
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