AN INCLUSION THEOREM FOR MODULAR GROUPS1

MORRIS NEWMAN

Let G denote the multiplicative group of 2×2 matrices

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,

where a, b, c, d are rational integers and ad-bc=1. Let G(m, n) denote the subgroup of G characterized by $b\equiv 0\pmod{m}$ and $c\equiv 0\pmod{n}$, where m and n are nonzero rational integers. In a previous paper [1] the author has proved Theorem I below:

THEOREM I. Let H be a subgroup of G containing G(1, n). Then $H = G(1, n_1)$, where $n_1 \mid n$.

More generally, let R be the ring of algebraic integers in a fixed algebraic number field of finite degree over the rationals. Let G_R denote the multiplicative group of 2×2 matrices

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
,

where $\alpha, \beta, \gamma, \delta$ are elements of R and $\alpha\delta - \beta\gamma = 1$. Let $G_R(\mathfrak{m}, \mathfrak{n})$ denote the subgroup of G_R characterized by $\beta \in \mathfrak{m}$ and $\gamma \in \mathfrak{n}$, where \mathfrak{m} and \mathfrak{n} are nonzero ideals in R. Then Theorem I has been generalized by Reiner and Swift in a forthcoming paper [2] in the following manner:

THEOREM II. Suppose that (n, (6)) = (1), and let H be a subgroup of G_R containing $G_R((1), n)$. Then $H = G_R((1), n_1)$, where n_1 is an ideal dividing n.

The restriction that n be prime to (6) is necessary in general, examples being given in [2] which show that Theorem II may be false otherwise.

We propose to prove here the following generalizations of Theorems I and II:

THEOREM 1. Suppose that (m, n) = 1. Let H be a subgroup of G containing G(m, n). Then $H = G(m_1, n_1)$, where $m_1 \mid m$ and $n_1 \mid n$.

THEOREM 2. Suppose that $(\mathfrak{m}, (6)) = (\mathfrak{n}, (6)) = (\mathfrak{m}, \mathfrak{n}) = (1)$. Let H be

Received by the editors September 16, 1953.

¹ The preparation of this paper was supported (in part) by the Office of Naval Research.

a subgroup of G_R containing $G_R(\mathfrak{m}, \mathfrak{n})$. Then $H = G_R(\mathfrak{m}_1, \mathfrak{n}_1)$, where \mathfrak{m}_1 and \mathfrak{n}_1 are ideals dividing \mathfrak{m} and \mathfrak{n} respectively.

The restriction that (m, n) = 1 (or that (m, n) = (1)) is not superfluous. We prove as a companion theorem to these theorems the following:

THEOREM 3. Suppose that (m, n) = k > 1. Then there are subgroups of G containing G(m, n) which are not of the form $G(m_1, n_1)$ where $m_1 \mid m$ and $n_1 \mid n$.

Theorem 3 of course applies to both Theorems 1 and 2.

The proofs of Theorems 1 and 2 are not different, and we give only the proof of Theorem 2.

Since $(\mathfrak{m}, \mathfrak{n}) = (1)$, there is an element μ of \mathfrak{m} and an element ν of \mathfrak{n} such that $\mu - \nu = 1$. Thus the matrix

$$X = \begin{pmatrix} \mu & 1 \\ \nu & 1 \end{pmatrix}$$

is an element of G_R .

Suppose now that

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in G_R(\mathfrak{m}, \mathfrak{n}).$$

Then the element in the (2, 1) place of $K^{-1}AK$ is $\mu\nu\delta - \mu\nu\alpha + \mu^2\gamma - \nu^2\beta$, and so $K^{-1}AK \subseteq G_R((1), mn)$ since $\mu\nu$, $\mu\gamma$, and $\nu\beta$ are all elements of mn. Thus $K^{-1}G_R(m, n)K \subseteq G_R((1), mn)$.

Similarly, if $A \in G_R((1), \mathfrak{mn})$, we can show that $KAK^{-1} \in G_R(\mathfrak{m}, \mathfrak{n})$, which implies that $KG_R((1), \mathfrak{mn})K^{-1} \subseteq G_R(\mathfrak{m}, \mathfrak{n})$, so that $K^{-1}G_R(\mathfrak{m}, \mathfrak{n})K \supseteq G_R((1), \mathfrak{mn})$. This together with the preceding relationship proves that $K^{-1}G_R(\mathfrak{m}, \mathfrak{n})K = G_R((1), \mathfrak{mn})$. In this manner we can show that for the same K

(1) If the ideals \mathfrak{m}_1 , \mathfrak{n}_1 are any divisors of the ideals \mathfrak{m} , \mathfrak{n} respectively, then $K^{-1}G_R(\mathfrak{m}_1, \mathfrak{n}_1)K = G_R((1), \mathfrak{m}_1\mathfrak{n}_1)$.

Suppose now that H is a group such that

$$G_R(\mathfrak{m}, \mathfrak{n}) \subseteq H \subseteq G_R$$
.

Then

$$K^{-1}G_R(\mathfrak{m}, \mathfrak{n})K \subseteq K^{-1}HK \subseteq K^{-1}G_RK.$$

Using (1), we have

$$G_R((1), \mathfrak{m}, \mathfrak{n}) \subseteq K^{-1}HK \subseteq G_R$$
.

Since $K^{-1}HK$ is a subgroup of G_R , and $(\mathfrak{mn}, (6)) = (1)$, Theorem II applies and we find that $K^{-1}HK = G_R((1), \mathfrak{l})$, where $\mathfrak{l} \mid \mathfrak{mn}$. Since (m, n) = (1), we have $\mathfrak{l} = \mathfrak{m}_1\mathfrak{n}_1$, where $\mathfrak{m}_1 \mid \mathfrak{m}, \mathfrak{n}_1 \mid \mathfrak{n}$. Using (1) once again we find that $H = KG_R((1), \mathfrak{m}_1\mathfrak{n}_1)K^{-1} = G_R(\mathfrak{m}_1, \mathfrak{n}_1)$. Theorem 2 is thus proved.

The only difference in the proof of Theorem 1 is that the restriction $(\mathfrak{m}, (6)) = (\mathfrak{n}, (6)) = (1)$ is unnecessary and that Theorem I is used above, instead of Theorem II.

We turn now to Theorem 3. We have that (m, n) = k > 1. Let p be any prime divisor of k, so that $G(p, p) \supseteq G(m, n)$. (Here and in what follows we use the fact that $G(m_1, n_1) \supseteq G(m, n)$ if and only if $m_1 \mid m$, $n_1 \mid n$). Let T be the element

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

of G, and let F be the smallest subgroup of G containing T and G(p, p). Since $T^2 = -I$ and T commutes with G(p, p), F consists of the totality $T^{\epsilon}G(p, p)$, where ϵ is 0 or 1. Thus if

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is any element of F, either $b \equiv c \equiv 0 \pmod{p}$ or $a \equiv d \equiv 0 \pmod{p}$. We now note the following:

- (i) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is an element of G(1, p) but not of F.
- (ii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ is an element of G(p, 1) but not of F.
- (iii) F contains G(p, p) properly, and is properly contained in G.

Thus F is not any of the groups G(1, 1), G(1, p), G(p, 1), G(p, p). F therefore is a group containing G(m, n) which is not itself of the form $G(m_1, n_1)$ for any divisors m_1 , n_1 of m, n respectively and so furnishes an example for Theorem 3.

REFERENCES

- 1. M. Newman, Structure theorems for modular subgroups, Duke Math. J. vol. 22 (1955) pp. 25-32.
- 2. I. Reiner and J. D. Swift, Congruence subgroups of matrix groups, To appear in Pacific Journal of Math.

NATIONAL BUREAU OF STANDARDS