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1. Introduction. An 77*-algebra of W. Ambrose [l] has the prop-

erty that the orthogonal complement of an ideal is an ideal of the

same kind. The present work is an attempt to characterize an 77*-

algebra in terms of this property. For this purpose it is necessary to

generalize the concept of 77*-algebra by introducing so-called two-

sided 77*-algebras. We assume merely that there are two involutions

in the algebra: right x—>xr and left x—>x( such that (yx, z) = (y, zx')

and (xy, z) — (y, xlz). It is possible to characterize two-sided 77*-

algebra in terms of the above relation imposed on ideals by making

some additional assumptions on the ideal annihilators. Since every

simple two-sided 77*-algebra is an 77*-algebra with the same topology

we have also found a new characterization of a proper 77*-algebra.

The notation is adopted essentially from [l; 6] and [3] but unlike

Ambrose we do not require that ideals be closed. We shall make a

distinction between a minimal ideal and a minimal closed ideal. Also

it is understood that a proper ideal is not dense in whole algebra and

that an idempotent is a nonzero element.

2. Complemented and right complemented algebra. First structure

theorem.

Definition 1. Let A be a Banach algebra which is a Hilbert space.

We shall call A a right complemented algebra (r. c. algebra) if it has the

property that the orthogonal complement of every right ideal is

again a right ideal. Similarly we define a left complemented algebra

(I. c. algebra). We shall call an algebra complemented if it is at the

same time r. c. and 1. c.

As an example of a right complemented algebra one can take a right

77*-algebra introduced by M. F. Smiley [6].

Example 1. Let a be a positive norm-increasing bounded operator

on a Hilbert space 77 and let A be the algebra of operators of the

Hilbert Schmidt type on 77. Then A is a right 77*-aIgebra (hence a

r. c. algebra) in the scalar product (a, b) = [aa, b], where [ , ] denote

a trace scalar product of the Hilbert Schmidt operators: [a, b]

= tr (a*b).
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1 Most of the results in this paper were taken from the author's doctoral thesis,
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Definition 2. A right complemented algebra A will be called

proper if r(A) = {xCA \Ax= (0)} =(0).

Lemma 1. The orthogonal complement Ip of a two-sided ideal I in a

proper right complemented algebra A is a two-sided ideal and is identical

with both the left and the right annihilator of I.

Proof. We know already that I* is a right ideal. Since I"ICIP^L

= (0), Iv is contained in 1(1) which is a two-sided ideal. Hence it is

sufficient to prove that Ip = 1(1). Consider Ii = ICM(I), which is also

a two-sided ideal. It is readily verified that IiC(A) = (0). Thus

1(1) = J". It follows at once that Ip = r(T).

It is easy to see that a semi-simple r. c. algebra is proper and that

every r. c. algebra is a direct sum of its radical and a semi-simple r. c.

algebra. Also it is always true for a proper r. c. algebra A that 1(A)
= (0).

We shall say that an element xCA is left self-adjoint if (xy, z)

= (y, xz) holds for every y, zCA. An element e will be called a left

projection if it is idempotent and left self-adjoint.

Lemma 2. Let Rbe a proper closed regular right ideal in an r. c. alge-

bra A and let e be its relative identity such that e£Pp. Then e is a left

projection.

Proof. Since e is a relative identity we have ex—xCR for every

xCA. It follows that eP = 0 and eRp = Rp; if x£P, then exCR and,

since exCR" also, we have ex = 0; if xCRp, then ex—xCRvC\R and

hence ex— x = 0, ex=x. In particular e2 = e. Also e is left self-adjoint

for if we consider x, yCA and write x = Xi+x2, y=yi+y2 with xi,

yiCR", x2, y2CR, we have:

(ex, y) = (exi + ex2, yi + y2) = (xu y, + y2) = (xh yx).

(x, ey) = (xi + x2, eyi + ey2) = (xi + x2, yi) = (xu yi).

Lemma 3. Every semi-simple r. c. algebra A contains a left projection.

Proof. Let x be an element in A which does not have a right quasi-

inverse. Let R be the closure of the regular right ideal {xy +y \ yCA }.

Then — x is a relative identity of R. We write — x = e+u with e£Pp,

uCR; then one can easily check that e also is a relative identity of R.

Hence e is a left projection.

Now we define the double orthogonality and the primitivity of a

projection as in [l ]. Also as in [l ] we show that every left projection

can be expressed as a finite sum of doubly orthogonal primitive left

projections, and the closed right ideal eA, where e is a projection, is a
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minimal closed ideal if and only if e is primitive. From the first part

of the last statement it follows that every semi-simple r. c. algebra

contains a primitive left projection.

Theorem 1. Every semi-simple r. c. algebra A is a direct sum of sim-

ple r. c. algebras each of which is a two-sided ideal in A.

Proof. Let e be a primitive left projection in A and let 7 be the

smallest closed two-sided ideal containing e. It is easy to see that 7

is a minimal closed two-sided ideal. Then Ip is also a semi-simple r. c.

algebra. Using Zorn's lemma we complete the proof.

This is the first structure (Wedderburn) theorem for r. c. algebras.

3. Two-sided 77*-algebras.

Definition 3. A Banach algebra A is called a two-sided 77*-algebra

if A is a Hilbert space and if for every aEA there are elements a1

and ar in A such that (ab, c) = (b, a'c) and (ba, c) = (b, car) hold for

every b, cEA.

Theorem 2. Every proper right 77*-algebra A is a two-sided 77*-

algebra.

Proof. Let xEA and let Ni be the linear space spanned by x. Let

Mi = Ni, M2 = Ml= {yEA\yrEMi} and N2 = Mi. Then N2 is one-
dimensional. Take uEN2 so that (x, x) = (xr, u) (note that (xr, u) =0

for all uEN2 is impossible). We shall show that u = xl. Let y, zEA;

then zyr=\x-\-v where X is some complex number and vEMi. It

follows that yzr = Xxr+z/r with vrEM2. Then we have: (xy, 2) = (x, zyr)

— (x, Ax+fl) = (x, Xx) = X(x, x) = X(xr, u) = (XV, u) = (\xr-\-vT, u)

= (yzr, u) = (y, uz).

4. Well-complemented algebra. Second structure theorem. It

turns out that in order to prove the second structure theorem for

(right, left) complemented algebras it is necessary to introduce a new

axiom. The algebras with the new axiom will be called well-comple-

mented.

Definition 4. A semi-simple r. c. algebra A will be called right well-

complemented (r. w. c.) if every proper right (left) ideal in A has a

nonzero left (right) annihilator. A c. algebra will be called well-

complemented (w. c.) if it is r. w. c.

A two-sided 77*-algebra furnishes an example of a w. c. algebra.

Now we prove a series of lemmas which will be used to prove the

second structure theorem.

Lemma 4. Let L be a left ideal in a Banach algebra A such that every
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member of L has a right quasi-inverse. Then L is contained in the radical

of A.

Proof. The lemma follows from the fact that if xy has a right quasi-

inverse u then yx has also a right quasi-inverse v = — (yx+yux).

Lemma 5. Every closed nonzero right ideal R in an r. w. c. algebra A

contains a left projection.

Proof. Since A is semi-simple l(Rp) contains an element x which

does not have a right quasi-inverse. Consider the closed regular right

ideal Pi = closure of {xy+y|y£.4} of which — x is a relative identity.

Since xPp=(0), we have RpCRi and hence PfC^- We write — x

= e+u with e£Pf, w£Pi; then e is again a relative identity of Pi.

By Lemma 2 e is a left projection.

Lemma 6. If e is a primitive idempotent in an r. w. c. algebra A, then

the right ideal P = eA is a minimal right ideal.

Proof. We know already that P is a minimal closed ideal. So it is

sufficient to show that if R is an ideal dense in P then e£P. In this

case we can find x£P such that x — e has a right quasi-inverse y. Then

xy+x — e = 0 and hence e£P.

Combining Lemma 6 with the technique used in [l] we prove:

Lemma 7. Let {a} be a family of primitive idempotents in a simple

algebra A. Let Aij = dAej. Then:

(i) Each An is isomorphic to the complex field;

(ii) Each A y is one-dimensional;

(iii) AijAik = Aik.

We shall say that an element x in a c. algebra A has a left adjoint

if there exists an element x!£^4 such that (xy, a) = (y, x'z) holds for

all y, zCA.

Lemma 8. If e is a primitive left projection in an r. w. c. algebra A

then every element in Ae has a left adjoint.

Proof. Let xCAe. Consider the right ideal P = x.4 =xeA. We may

assume that ex^O (otherwise we replace x by y = x+e and prove

that y has a left adjoint). Then since exe = Xe we have eR = eA from

which it follows that R is closed. Hence R contains a left projection

/ = xz = xez, where z is some element in A. Then fej^-0 (otherwise

0 = ef = exez = \ez, since e/is left adjoint of/e) and hence fe = xeze=(ix

or x = \/p.fe from which follows that x has a left adjoint xl = \/p.ef.

Now we are in position to prove the second structure theorem.
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Theorem 3. Every r. w. c. algebra is a two-sided H*-algebra. In par-

ticular a simple r. w. c. algebra A is isomorphic to the algebra described

in Example 1.

Proof. We follow the technique used in [l] and [6]. Let {d} be

a maximal family of doubly orthogonal primitive left projections in

A. Consider R = E«'SJ eiA« where J is the set of indices in {e,-}. Then

R is closed. If Rt^A then R' contains a primitive left projection e.

Then (ae, eie) = (e, e,e)=0, e,e = 0 for every iEJ, i.e., e is doubly

orthogonal to every e,-, which leads to a contradiction. Thus R = A.

Consider L= E'G^ Ae* an<^ suppose L?^A. Then the right annihi-

lator r(L) is a nonzero right ideal. This simply means that there is an

element xEA such that e,x = 0 for all c<. Then for any y£e,.4 we

have (dy, x) = (y, e,x)=0, i.e., x is orthogonal to all eiA, hence to

whole A, which is a contradiction. Thus L is dense in A. Let us use

the notation Aij = eiAej; then 7= E«.j Aa- It follows from Lemma 8

that every element in Ay has a left adjoint (in Aj/). So we choose the

matrix units enEAn such that eu = et and e^ — eji. We define the

matrix (a,/) by setting «# = (ekt, e*y). It is easy to see that an does not

depend upon k and that the matrix (a,,) is self-adjoint. Any two ele-

ments in L have the form x = E«'.j x\fia and y = E*.yy«e»7> where Xy

and y,y are suitable complex numbers, and the scalar product has the

form:

(*» y) = Y, xikakjyij = tr(xoy*),

where x, yand a here stand for matrices (x,y), (y,,) and (a,-,-) respec-

tively.

Now we shall show that (a,y) represents a bounded operator on

L2(J). For this purpose let us consider the conjugate-linear mapping

T: x—>x! restricted to Aei, where 1 is some fixed index in /. Since

every element in Aei has a left adjoint T is defined everywhere on

Aei; the range of T is a subset of e\A (in fact one can show that the

range is entire eiA). The graph of T is closed: if (xn, x„)—»(x, u), then

xn—>x and x„—»«, and for every y, zG-<4(xny, z)—>(xy, z) and (y, x„z)

—»(y, uz) from which it follows that xl = u, and so (x, u) also belongs

to the graph of T. From the closed graph theorem it follows that T is

continuous. Thus there exists a positive number M such that

(*) (x>, xl) 5S M(x, x)

holds for all xEAei.

Now there is a natural 1-1 correspondence between elements of

L2(J) and Aei, in which a member x(i) of L2(7) corresponds to the

element x= E«e-r x(*)e« and Aei- If *(*) and y(i) are finite sequences
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in L2(J) then xl = ]£,• x(i)eu, yl = X)< y(i)eu and (x?, y')

= E«.y *(*)««y0")« BY the continuity of P (x<, y') = 2<.j x(i)a,jy(j)
holds for all x(i), y(i) in L2(J). From (*) we have then 2«J ^W«^(i)

ganAf E> I x(i) 12- Completing the proof as in [6] we show that L is

an algebra of the type described in Example 1. Since L is complete

we have L =A. So A is a left and hence a two-sided i?*-algebra.

To conclude this section we construct a complemented algebra

which is not well-complemented.

Example 2. Let a be some positive norm-increasing unbounded

operator with domain dense in some Hilbert space II. Let A be the

set of all operators aonH such that act is an operator of the Hilbert

Schmidt type. Then A is a complemented algebra in the scalar prod-

uct (a, b) = [aa, ba]=tr(aa(ba)*). It is easy to see that there are

two dense subsets of elements in A, every element of one having the

left adjoint al=a* and every element of the other having the right

adjoint ar = a2a*Sr2 in A. It remains to show that A is not well-

complemented. Let us denote by A the algebra of all operators of the

Hilbert Schmidt type on H, and let e be some left projection in A.

It is easy to show that the Hilbert space H can be realized as Ae and

so that if xCHcorresponds to x£^4e and a is any operator such that

a(x) is defined then a(x) =ax. Since a is unbounded there exists an

aCAe = Ae such that aa is not of the Hilbert Schmidt type. This

means that a does not have the left adjoint. Then from Lemma 8 it

follows that A is not well-complemented.

5. A special realization of a well-complemented algebra.

Example 3. Let X be a norm-decreasing linear transformation from

a Hilbert space H2 onto a Hilbert space Ht which has a bounded in-

verse transformation p. from Hi onto H2. Let A be the set of all Hilbert

Schmidt operators a from Hi into H2. Let us define the multiplication

by a o b = a\b. Then A is a w. c. algebra in the scalar product (a, b)

= tr (ab*). All the laws of an algebra are easily verified; \\ab\\ ^\\a\\ \\b\\

follows from the fact that X is norm-decreasing. The right and the

left adjoint of an element aCA are defined byar =/«j*X*and a1 =\*a*p..

It turns out that every simple w. c. algebra A is of the above form.

This is shown in the next theorem.

Theorem 4. Every simple w. c. algebra A is of the form described in

Example 3.

Proof. Let {e,} and {fk} be maximal families of doubly orthogonal

primitive left and right projections in A respectively. Then A

= ~22j,k ejAfk. We choose e.y and /« as in Theorem 3, such that
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*#=«/. eltj = eii,fkk=fk,fu=fik. Let 7=0') and K = (k) be the sets of
indices in {ey} and {/*} respectively; let 1£7 and 2EK be some

fixed indices. Choose WnEciAf2 such that ||wi2||=l and let wjk

= ejiWi2f2k for each {j, k)EJXK. Then wikEejAfk and ||wyt|| = 1- Since

every ejAfk is one-dimensional, w,k constitute an orthonormal base

for A. Thus every xEA has the form x= E;'.* XU, k)wjk and so the

scalar product is of the form (x, y) = Ej',* XU< k)y(j, k).

Now consider Wikwj2: since Wikwj2E^iAf2 we have Wikwj2 =\kjWi2 for

some complex Xjy. Multiplying both sides of the last equality with en

on the left and with/2j on the right we get WikWji=\kjwn. Thus the

multiplication has the form xy = E»'.* x(*, k)wik   E/.J y(j<  l)wn

= E»'.l(E*..l X(h k)\kjy(j, l))Wil.
It remains to show that the matrix X*/ regarded as an operator from

772 = L2(7) into Hi = L2(K) is norm-decreasing and has an inverse.

Since WikEetA we have Wj*= E* r**ert f°r some matrix {r^} which

can be shown to be independent of i; also e<« = Ej PhiWu where {hhi }

is independent of i. It is easy to show that {fihi} is the inverse of

{rkh}. From the other hand \kjWu = wikWn= E» rkheihWji = TkjeijWji

= TkjWn which simply means that \kj = Tkj and that {um} is an in-

verse of {\jy}. In order to show that {\kj} is norm-decreasing we

consider aij=(eu, Ci,-) = (E* VikWik^i MWii) — E* M»*My* which

simply means that a=jujLt*. From the fact that a is positive and

norm-increasing it is easy to derive that ju is also norm-increasing.

The rest of the proof follows immediately.

Thus the algebra of Example 3 is essentially a most general w. c.

algebra. All w. c. algebras are obtained by considering all possible

direct sums of the algebras of the form of that described in Example 3.
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