ON THE IMBEDDING OF A RIGHT COMPLEMENTED ALGEBRA INTO AMBROSE'S H*-ALGEBRA

PARFENY P. SAWOROTNOW

Let A be a Banach algebra with a Hilbert space norm (norm defined by a scalar product). We shall call A a right complemented algebra if it has the property that the orthogonal complement of a right ideal is again a right ideal. This notion was introduced in the author's doctoral thesis [5]. It was proved that under certain additional assumptions every right complemented algebra is left complemented. We shall prove this theorem for a general right complemented algebra. We shall also show that the most general simple right (left) complemented algebra is of the following form.

EXAMPLE. Let α be a (possibly unbounded) self-adjoint linear operator with domain dense in a Hilbert space H and the range being a subset of H. Let A be the algebra of all linear operators a of the Hilbert Schmidt type on H such that $|a\alpha| < \infty$, where $| \ |$ is the trace norm of an operator: $|a|^2 = \text{tr } (a^*a)$. Then A is a right (as well as left) complemented algebra in the scalar product $(a, b) = [a\alpha, b\alpha] = \text{tr } (a\alpha(b\alpha)^*)$.

We shall use the following terminology (see [5]). A Banach algebra shall be called simple if it is semi-simple and has no proper two-sided ideals except those which are dense in whole algebra. We shall say that x^{l} is the left adjoint of x if $(xy, z) = (y, x^{l}z)$ holds for all y, z in the algebra. A left projection e is a left self-adjoint (nonzero) idempotent; a primitive left projection is a left projection which cannot be written as a sum of two doubly orthogonal left projections (compare with W. Ambrose [1]). The orthogonal complement of an ideal I will be denoted by I^{p} .

We have proved in [5] that every simple right complemented algebra has a primitive left projection. So we begin by proving:

THEOREM 1. Let A be a simple right complemented algebra and let e be a primitive left projection in A. Then every element in eA has a left adjoint.

PROOF. Let $a \in eA$; then ea = a. We may assume that $ae \neq 0$ (otherwise we consider b = a + e for which $be \neq 0$). Then $a^2 = eaea = \lambda a$, i.e., a is a multiple of some idempotent f. Consider the closed regular right ideal $Q = \{z - fz \mid z \in A\}$, f is a relative identity of Q. We write

Presented to the Society, June 18, 1955; received by the editors February 17, 1956.

THEOREM 2. The set of elements in a simple right complemented algebra A having left adjoint is dense in A.

PROOF. Let $F = \{e_i\}$ be the family of all primitive left projections in A. Let R be the closed right ideal generalized by F, i.e., R is the closure of the linear space spanned by all elements of the form $e_i x$, $e_i \in F$, $x \in A$. It follows from Lemma 1 that the set of elements in R having a left adjoint is dense in R. It remains to show that R = A. Suppose $R \neq A$, then $R^p \neq (0)$. Let $a \in R^p$ be an element which does not have a right quasi-inverse. Consider the right regular ideal $Q = \text{closure of } \{ax + x \mid x \in A\}$ for which -a is relative identity. We write -a = e + u with $e \in Q^p$, $u \in Q$. Then it is easy to see that e is a left projection (of course $e \neq 0$) such that eu = 0 (compare with [5, Lemma 2]). Thus $e \in F$ and hence (ea, ea) = (ea, a) = 0, ea = 0. But on the other hand -ea = e(e + u) = e, which is a contradiction. Thus R = A.

COROLLARY. Every semi-simple right complemented algebra A is a left complemented algebra; the set of elements in A having right adjoint is dense in A.

From now on we may refer to a semi-simple right complemented algebra simply as a "complemented algebra."

Now we proceed with the second part of our paper. Let A be a simple complemented algebra and let e be a primitive left projection in A. We consider the ideals L = Ae and R = eA. Every element in R has a left adjoint while L has a dense subset of elements having left adjoint. We shall show that A is a dense subalgebra of a suitably constructed H^* -algebra. It will be done by proving a series of lemmas in which A, e (and hence L and R) are fixed once and for all.

LEMMA 1. If $x_1, x_2 \in L$ and $y_1, y_2 \in R$, then $(x_1y_1, x_2y_2) = \omega^{-2}(x_1, x_2) \cdot (y_1, y_2)$ where $\omega = ||e||$.

PROOF. Since $x_2^l x_1 \subseteq eAe$ we have $x_2^l x_1 = \lambda e$ for some complex $\lambda(eAe)$ is isomorphic to the complex field [5, Lemma 7]). Then $(x_1, x_2) = (x_1, x_2 e) = (x_2^l x_1, e) = (\lambda e, e) = \lambda ||e||^2 = \lambda \omega^2$ and $(x_1 y_1, x_2 y_2) = (x_2^l x_1 y_1, y_2) = (\lambda y_1, y_2) = \lambda(y_1, y_2) = \omega^{-2}(x_1, x_2)(y_1, y_2)$.

COROLLARY. If $x \in L$ and $y \in R$ then $||xy|| = \omega^{-1}||x|| ||y||$.

LEMMA 2. If $x \in R$ then $||x^l|| \le \omega ||x||$.

PROOF. If $x \in R$, then $xx^{l} = \lambda e$ for some positive λ (we again use the

fact that eAe is isomorphic to the complex field). So we have:

$$||x^{l}||^{2} = (x^{l}e, x^{l}e) = (xx^{l}, e) = \lambda(e, e) = \lambda||e|| \cdot ||e|| = ||\lambda e|| \cdot ||e||$$
$$= ||xx^{l}|| \cdot ||e|| \le ||x|| \cdot ||x^{l}|| ||e||$$

or $||x^{l}|| \le ||x|| \cdot ||e|| = \omega ||x||$.

LEMMA 3. If an element has the form $z = \sum_{i=1}^{n} x_i y_i$ with $x_i \in L$, $y_i \in R$, then x_1, x_2, \dots, x_n can be so chosen in L that $(x_i, x_j) = 0$ for $i \neq j$; also y_1, y_2, \dots, y_n can be so chosen in R that $(y_i^l, y_j^l) = 0$ for $i \neq j$.

PROOF. The lemma is easily proved by induction.

Now consider S = LR = AeA. We define the function [,] on $S \times S$ by setting

$$[x_1x_1, y_2y_2] = \frac{1}{\omega^4}(x_1, x_2)(y_2, y_1^l)$$
 where $\omega = ||e||$.

(It is understood that $x_1, x_2 \in L, y_1, y_2 \in R$.)

LEMMA 4. The function [,] is independent of the choice of the primitive left projection e.

PROOF. Let e_1 and e_2 be any two primitive left projections. Suppose $z_i = x_i y_i$, i = 1, 2, with $x_i \in Ae_1$ and $y_i \in e_1 A$. Then $[x_1 y_1, x_2 y_2]_1 = 1/\omega_1^4(x_1, x_2)(y_2^i, y_1^i)$, where $\omega_1 = ||e_1||$. We shall show that $z_i \in Ae_2 A$ and that $[z_1, z_2]_1 = [z_1, z_2]_2$, where $[,]_2$ is the above function defined with respect to e_2 .

It can be easily shown that there are elements e_{12} and e_{21} in A such that $e_{12}^l = e_{21}$, $e_{12}e_{21} = e_1$, $e_{21}e_{12} = e_2$, $e_{12}e_{22}e_{21} = e_1$ and $e_{21}e_{12} = e_2$. Then $\mathbf{z}_i = x_i \mathbf{y}_i = x_i e_1 \mathbf{y}_i = x_i e_{12} e_2 e_{21} \mathbf{y}_i$ and hence $\mathbf{z}_i \in A e_2 A$. Also

$$\begin{split} [z_1, z_2]_2 &= \frac{1}{\|e_2\|^4} (x_1 e_{12}, x_2 e_{12}) (y_2^l e_{12}, y_1^l e_{12}) \\ &= \frac{1}{(e_{21} e_{12}, e_{21} e_{12})^2} \cdot \frac{(x_1, x_2) (e_{12}, e_{12})}{\omega_1^2} \cdot \frac{(y_2^l, y_1^l) (e_{12}, e_{12})}{\omega_1^2} \\ &= \frac{1}{(e_{12}, e_{12})^2} \cdot \frac{1}{\omega_1^4} (x_1, x_2) (y_2^l, y_1^l) (e_{12}, e_{12})^2 \\ &= \frac{1}{\omega_1^4} (x_1, x_2) (y_2^l, y_1^l) = [z_1, z_2]_1. \end{split}$$

LEMMA 5. The function [,] has the following properties:

- (a) $[\lambda x, y] = \lambda [x, y]$
- (b) [x, y] = complex conjugate of [y, x].
- (c) $[x, x] \ge 0$ and [x, x] = 0 if and only if x = 0.
- (d) $\left[\sum_{i=1}^{n} z_{i}, z\right] = \sum_{i=1}^{n} \left[z_{i}, z\right]$, provided $z_{i}, z \in S$ and $\sum_{i=1}^{n} z_{i} \in S$.

PROOF. (a)–(c) are easily verified. We shall prove (d). Since $z_i, z \in S$ we have $z_i = x_i y_i$, z = xy and also $u = \sum_{i=1}^n z_i = vw$ with $x_i, x, v \in L$, $y_i, y, w \in R$. Let us assume that z_1, z_2, \dots, z_n, x are fixed while y is variable. We have: $(u, z) = (vw, xy) = \omega^{-2}(v, x)(w, y)$ or $(v, x)(w, y) = \omega^2 \sum_{i=1}^n (x_i y_i, xy) = \sum_{i=1}^n (x_i, x)(y_i, y)$. Now let us assume that $(v, x) \neq 0$. This can be done without loss of generality. Then we can write $(x_i, x) = \lambda_i(v, x)$ for some complex $\lambda_i, i = 1, 2, \dots, n$ and so we have:

$$(v, x)(w, y) = \sum_{i=1}^{n} \lambda_i(v, x)(y_i, y) = (v, x) \sum_{i=1}^{n} (\lambda_i y_i, y)$$

or $(w, y) = (\sum_{i=1}^{n} \lambda_i y_i, y)$. It can be written $(w - \sum_{i=1}^{n} \lambda_i y_i, y) = 0$, where y is an arbitrary element in R. This simply means that $w = \sum_{i=1}^{n} \lambda_i y_i$ (note that $w, y \in \mathbb{R}$).

Now let us take y so that z = xy. Then we have:

$$[u, z] = [vw, xy] = \frac{1}{\omega^4} (v, x) (y^l, w^l) = \frac{1}{\omega^4} (v, x) \left(y^l, \sum_{i=1}^n \bar{\lambda}_i y_i^l \right)$$

$$= \frac{1}{\omega^4} \sum_{i=1}^n \lambda_i (v, x) (y^l, y^l_i) = \frac{1}{\omega^4} \sum_{i=1}^n (x_i, x) (y^l, y^l_i)$$

$$= \sum_{i=1}^n [x_i, y_i xy] = \sum_{i=1}^n [z_i, z].$$

Now let I be the set of all finite sums of elements in S, i.e., I is the set of all elements of the form $\sum_{i=1}^{n} x_i y_i$ with $x_i \in L$, $y_i \in R$. It is easy to see that I is a two-sided ideal dense in A.

LEMMA 6. The function [,] has a unique extension to I, which has the properties of a scalar product.

PROOF. If $z = \sum_{i=1}^{n} z_i$ and $u = \sum_{j=1}^{n} u_j$ with $z_i \in S$, $u_j \in S$, then we define $[z, u] = \sum_{i,j} [u_i, z_j]$. It is easy to verify that [,] is a scalar product, using Lemma 5. The uniqueness of [,] follows from (d).

LEMMA 7. If $u, v \in I$ then $|uv| \le |u| |v|$, where |uv| = 0 denotes the corresponding to |uv| = 0, |uv| = 0

PROOF. (a) We first take $u, v \in S$, then $u = x_1y_1, v = x_2y_2$ with $x_i \in L$, $y_i \in R$. Then $uv = x_1y_1x_2y_2 = \lambda x_1ey_2$, since $y_1x_2 = \lambda e$ for some λ , and

$$|uv| = |\lambda| |x_1| y_2| = \frac{1}{\omega^2} |\lambda| \cdot ||x_1|| \cdot ||y_2||.$$

But $|\lambda|\omega^2 = |\lambda|(e, e) = |(\lambda e, e)| = |(y_1x_2, e)| = |(x_2, y_1^l)| \le ||x_2|| ||y_1^l||$, i.e., $|\lambda| \le \omega^{-2} ||x_2|| \cdot ||y_1^l||$.

Hence

$$|uv| \le \frac{1}{\omega^2} ||x_1|| \cdot ||y_1^l|| \frac{1}{\omega^2} ||x_2|| \cdot ||y_2^l|| = |u| |v|.$$

(b) Suppose that $u \in I$ and $v \in S$; then $u = \sum_{i=1}^{n} x_i y_i$. We may assume that $(x_i, x_j) = 0$ for $i \neq j$. Then $[x_i y_i, x_j y_j] = 0$ and $[x_i y_i v, x_j y_j v] = 0$ and hence $|u|^2 = \sum_{i=1}^{n} |x_i y_i|^2$ and $|uv|^2 = \sum_{i=1}^{n} |x_i y_i v|^2$. Thus:

$$|uv|^2 \le \sum_{i=1}^n |x_i y_i|^2 |v|^2 = |u|^2 |v|^2.$$

(c) If $u \in I$ and $v \in I$ we write $v = \sum_{i=1}^{n} x_i y_i$ so that $(y_i^l, y_j^l) = 0$ for $i \neq j$ and apply the technique of the previous paragraph.

LEMMA 8. If $u \in I$ then $|u| \leq ||u||$.

PROOF. If $u \in S$, then u = xy, $x \in L$, $y \in R$ and $|u| = \omega^{-2}||x|| \cdot ||y^i|| \le \omega^{-1}||x|| \cdot ||y|| = ||u||$ since $||y^i|| \le \omega||y||$ (Lemma 2). If $u \in I$, then $u = \sum_{i=1}^n u_i = \sum_{i=1}^n x_i y_i$; we may assume that $(x_i, x_j) = 0$ for $i \ne j$, then $(u_i, u_j) = 0$ and also $[u_i, u_j] = 0$ for $i \ne j$ and hence $|u|^2 = \sum_{i=1}^n |u_i|^2 \le \sum_{i=1}^n ||u_i||^2 = ||u||^2$.

COROLLARY. If $u, v \in I$ then $[u, v] \leq ||u|| \cdot ||v||$.

Thus the scalar product $[\ ,\]$ is continuous in the original topology; hence can be extended to whole A. In general A is not complete in the new scalar product, so let \tilde{A} be the completion of A with respect to $[\ ,\]$. Let us extend continuously the algebraic operations of A (including the involution) to \tilde{A} . Then it is easy to see that \tilde{A} is an H^* -algebra.

Indeed let x be an element in A having left adjoint x^l in A, then if z, $u \in S$ we have $z = x_1y_1$, $u = x_2y_2$, $x_i \in L$, $y_i \in R$, i = 1, 2, and so

$$[zx, u] = [x_1y_1x, x_2y_2] = \frac{1}{\omega^4}(x_1, x_2)(y_2^l, x^l y_1^l) = \frac{1}{\omega^4}(x_1, x_2)(xy_2^l, y_1^l)$$
$$= [x_1y_1, x_2y_2x^l] = [z, ux^l].$$

From this it is easy to verify that $[yx, z] = [y, zx^i]$ for all $y, z \in A$. Similarly $[xy, z] = [y, x^iz]$ for all $y, z \in A$ and it is easy to show that $|x^i| = |x|$ for all $x \in A$ having left adjoint, from which it follows that

the involution $x \to x^i$ can be uniquely extended to whole \tilde{A} in such a manner that $[xy, z] = [y, x^i z]$ and $[yx, z] = [y, zx^i]$ hold for all y, z in \tilde{A} .

Now we are in a position to prove the following theorem:

THEOREM 3. Every simple complemented algebra A is isomorphic to an algebra of operators a of the Hilbert Schmidt type on a Hilbert space such that $\operatorname{tr}((a\alpha)^*a\alpha) < \infty$ where α is some (unbounded) self-adjoint operator with the domain dense in the Hilbert space.

PROOF. Above we constructed the H^* -algebra \tilde{A} in which A is dense. \tilde{A} is isomorphic to the algebra of operators of the Hilbert Schmidt type on some Hilbert space H (it is easy to verify that \tilde{A} is simple). In particular we may take H to be the closed ideal $e\tilde{A}$, where e is the above considered primitive left projection. The isomorphism is set up as follows: if $a \in \tilde{A}$ corresponds to the operator T and $x \in e\tilde{A}$, then T(x) = xa.

Now let us consider eA and $e\tilde{A}$. Since the scalar product $[\ ,\]$ of \tilde{A} restricted to eA is continuous with respect to the original norm there exists a bounded self-adjoint operator β defined on eA such that $[a,b]=(\beta(a),\beta(b))$ holds for every $a,b\in eA$. One can easily see that β is also continuous with respect to $|\ |\ -\text{norm}$ (corresponding to $[\ ,\])\colon |\beta(a)|=||\beta^2(a)||\leq ||\beta||\, ||\beta(a)||=||\beta||\, |a|$. Thus β can be extended to whole $e\tilde{A}$.

Snce the mapping $a oup a^l$ is 1-1 (follows from the fact that A is semi-simple), β is 1-1 also (note that $(\beta(a), \beta(b)) = [a, b] = \omega^{-4}(b^l, a^l)$). Since β is also self-adjoint the range of β (even if β is restricted to eA) is dense in eA. Now let x be any member of eA and let x_n be a sequence of elements in the range of β approaching x in $\|\cdot\|$ -norm. Then $x_n oup x$ also in $\|\cdot\|$ -norm. Let y_n be the sequence such that $\beta(y_n) = x_n$. Then $\|y_n - y_m\| = \|\beta(y_n) - \beta(y_m)\| = \|x_n - x_m\|$, i.e. y_n is a Cauchy sequence. Therefore there is an element y in $e\tilde{A}$ such that $y_n oup y$ in $\|\cdot\|$ -norm. Then we have $x = \beta(y)$ and so the range of β extended to $e\tilde{A}$ is entire eA. Hence there exists an (unbounded) operator α with the domain dense in $e\tilde{A}$ such that $(a, b) = [\alpha(a), \alpha(b)]$ holds for every $a, b \in eA$.

Let us show that $\alpha(a) = a\alpha$ for every $a \in eA$ where $a\alpha$ means operator defined by $\alpha(a(x))$ (x is an element in the Hilbert space). But a(x) = xa if $x \in e\tilde{A}$. So it is sufficient to show that $\alpha(xa) = x(\alpha(a))$. But it follows from the fact that $x \in e\tilde{A}$, $a \in e\tilde{A}$ and $\alpha(a) \in e\tilde{A}$: $\alpha(xa) = \alpha(exea) = \alpha(\lambda ea) = \lambda \alpha(ea) = \lambda e\alpha(ea) = exe\alpha(a) = x\alpha(a)$, where λ is some scalar such that $exe = \lambda e$.

Thus we have $(a, b) = [a\alpha, b\alpha] = \text{tr } ((b\alpha)*a\alpha)$ for every $a, b \in eA$. One can quite easily show (using Lemma 1) that this is true for every $a, b \in A$.

REFERENCES

- 1. W. Ambrose, Structure theorem for a special class of Banach algebras, Trans. Amer. Math. Soc. vol. 57 (1945) pp. 364-386.
- 2. N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. vol. 67 (1945) pp. 300-320.
 - 3. I. Kaplansky, Dual rings, Ann. of Math. vol. 49 (1948) pp. 689-701.
- 4. L. H. Loomis, An introduction to harmonic analysis, New York, Van Nostrand, 1953, pp. 100-106.
- 5. P. P. Saworotnow, On a generalization of the notion of H*-algebra, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 49-55.
 - 6. M. F. Smiley, Right H*-algebra, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 1-4

CATHOLIC UNIVERSITY OF AMERICA

A BOUNDARY LAYER PROBLEM FOR AN ELLIPTIC EQUATION IN THE NEIGHBORHOOD OF A SINGULAR POINT¹

VICTOR J. MIZEL

We consider the first boundary value problem for

$$Lu = \epsilon \Delta u + A(x, y)u_x + B(x, y)u_y + C(x, y)u = D(x, y)$$

on a region R under the following hypotheses

- I. R is an open simply- or multiply-connected region in the (x, y) plane whose boundary S consists of a finite number of simple closed curves, and R+S is contained in an open connected region R_0 throughout which A(x, y), B(x, y), C(x, y), and D(x, y) are of class C^6 .
- II. Along each closed curve of S the functions giving x, y, and the boundary value \bar{u} in terms of arclength are of class C^6 .
 - III. C(x, y) < 0 on R_0 .
- IV. The system (for characteristics of the abridged ($\epsilon = 0$) equation)

(1)
$$\frac{dx}{dt} = -A(x, y), \quad \frac{dy}{dt} = -B(x, y)$$

has as its singularities on R+S a finite number of stable attractors P_1, \dots, P_n .

Received by the editors February 14, 1956.

¹ The author wishes at this point to express his gratitude to Professor N. Levinson who originally suggested the problem to him and who gave him encouragement throughout.