ON THE IMBEDDING OF A RIGHT COMPLEMENTED
ALGEBRA INTO AMBROSE’S H*-ALGEBRA

PARFENY P. SAWOROTNOW

Let A be a Banach algebra with a Hilbert space norm (norm de-
fined by a scalar product). We shall call 4 a right complemented
algebra if it has the property that the orthogonal complement of a
right ideal is again a right ideal. This notion was introduced in the
author’s doctoral thesis [5]. It was proved that under certain addi-
tional assumptions every right complemented algebra is left comple-
mented. We shall prove this theorem for a general right comple-
mented algebra. We shall also show that the most general simple
right (left) complemented algebra is of the following form.

ExAMPLE. Let a be a (possibly unbounded) self-adjoint linear oper-
ator with domain dense in a Hilbert space H and the range being a
subset of H. Let A be the algebra of all linear operators a of the Hil-
bert Schmidt type on H such that |aa| < «, where | | is the trace
norm of an operator: |a| 2=tr (a*a). Then A is a right (as well as
left) complemented algebra in the scalar product (a, )= [ac, ba]
=tr (aa(ba)*).

We shall use the following terminology (see [5]). A Banach algebra
shall be called simple if it is semi-simple and has no proper two-sided
ideals except those which are dense in whole algebra. We shall say
that x! is the left adjoint of x if (xy, 2) =(y, x'2) holds for all ¥, z in
the algebra. A left projection e is a left self-adjoint (nonzero) idem-
potent; a primitive left projection is a left projection which cannot be
written as a sum of two doubly orthogonal left projections (compare
with W. Ambrose [1]). The orthogonal complement of an ideal I will
be denoted by I?.

We have proved in [5] that every simple right complemented alge-
bra has a primitive left projection. So we begin by proving:

THEOREM 1. Let A be a simple right complemented algebra and let e
be a primitive left projection in A. Then every element in eA has a left
adjoint.

PRrOOF. Let aEed ; then ea =a. We may assume that ae#0 (other-
wise we consider b=a-+e¢ for which be0). Then a?=eaea =Aa, i.e.,
a is a multiple of some idempotent f. Consider the closed regular right
ideal Q= {z— fz] 2EA4 }, f is a relative identity of Q. We write
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f=e+u with e,€Q?, uE€Q; then e, is a left projection and fe;=f,
eif =e1. Hence ee; 0 (note that e;e0 also) and so we have: ee; =eef
=eeief = puef = uf, i.e., f'=1/a(eie). Hence ¢ also has a left adjoint.

THEOREM 2. The set of elements in a simple right complemented alge-
bra A having left adjoint is dense in A.

PRrOOF. Let F= {e,} be the family of all primitive left projections
in A. Let R be the closed right ideal generalized by F, i.e., R is the
closure of the linear space spanned by all elements of the form e;x,
e;EF, x€A4. It follows from Lemma 1 that the set of elements in R
having a left adjoint is dense in R. It remains to show that R=A4.
Suppose R#A4, then R?#(0). Let aER? be an element which does
not have a right quasi-inverse. Consider the right regular ideal
Q=closure of {ax+x|xEA4} for which —a is relative identity. We
write —a=e+u withe€Q?,uE Q. Thenitiseasy to see that e is a left
projection (of course e0) such that ex =0 (compare with [5, Lemma
2]). Thus e€F and hence (ea, ea) =(ea, a) =0, ea=0. But on the
other hand —ea =e(e+u) =e, which is a contradiction. Thus R=4.

COROLLARY. Every semi-simple right complemented algebra A is a left
complemented algebra; the set of elements in A having right adjoint is
dense in A.

From now on we may refer to a semi-simple right complemented
algebra simply as a “complemented algebra.”

Now we proceed with the second part of our paper. Let 4 be a sim-
ple complemented algebra and let e be a primitive left projection in
A. We consider the ideals L=A4e and R=eA. Every element in R has
a left adjoint while L has a dense subset of elements having left ad-
joint. We shall show that A4 is a dense subalgebra of a suitably con-
structed H*-algebra. It will be done by proving a series of lemmas in
which 4, e (and hence L and R) are fixed once and for all.

LEMMA 1. If %, x,EL and y1, y:ER, then (x1y1, X2y2) =w~2(x1, X2)
- (y1, ¥2) where "’=”e”°

PROOF. Since xjx;Eede we have xhx; =\e for some complex A(ede
is isomorphic to the complex field [5, Lemma 7]). Then (x, xs)
= (%1, %2¢) = (x3%1, €) = (Ne, €) =)\”e”2 =Aw?and (x1y1, X2y2) = (Xx1y1, V2)
= Ay1, y2) =N, ¥2) =w™*(x1, %2) (91, ¥2)-

COROLLARY. If xE€L and yER then ||xy|| =w=1|x||||3]|.
LEMMA 2. If xER then ||xY| Sw||x].

Proor. If xER, then xx'=XAe for some positive N (we again use the
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fact that ede is isomorphic to the complex field). So we have:
[#]2 = (xle, ate) = (w%, €) = ey €) = A[el] -[Jel| = [[ne]|-||e]
= [l==l-llell = ll] -[l#*]l [l
or [|]| I|x[| [lel] = wl|.

LeEMMA 3. If an element has the form z= ZZ‘_I xy; with x;&EL, y;ER,
then xy, X2, * - + , Xn can be so chosen in L that (x;, x;) =0 for ij; also
Y1, Y2, * + * , Yn can be so chosen in R that (v}, ;) =0 for i%j.

Proor. The lemma is easily proved by induction.
Now consider S=LR=A4eA. We define the function [, ] on SXS
by setting

1
[xlxh yz)’z] == (%1, xz)(yzl» y:) where v = I|e“
w

(It is understood that x;, x&L, y1, y2ER.)

LEMMA 4. The function [ , | is independent of the choice of the primi-
tive left projection e.

PRrOOF. Let ¢; and e; be any two primitive left projections. Suppose
Zi=x; i=1, 2, with x,E4e; and y;,Ceid. Then [x1y1, %ay2 )
=1/wi(x1, %) (3%, 3}), where w1 =|e;]|. We shall show that z;E4ed
and that [21, 2 ]i= [21, 22]s, where [, ]; is the above function defined
with respect to e..

It can be easily shown that there are elements e, and e in 4 such
that 8ig=321, 12621 = €1, €21€12 = €2, €12€2€21 =€) and €21€1€812 = €3. Then
Zi=XYi =Xy = X€1e2021y; and hence z;E e 4. Also

l 1
[Zu Zz]z = “—“4‘ (xlem, xzem)(yzem, y1812)
€2
[
_ 1 (21, %2)(exs, €12) (32, 1) (e12, €12)
(621612, 821812)2 w;® w,?
1

[ 2
(e e )2.;-—4 (xl’ x2)(y2' yl)(el2) 812)2
12y €12 1

[
= (%1, x2)(y2, 1) = [21, 52]1-
wy

LEMMA 5. The function [ , | has the following properties:
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(@) [\, y]=N[x, 5]

(b) [x, y]=complex conjugate of [y, x].

(©) [x, x]=0 and [x, x]=0 if and only if x=0.

(d) [, 2, 2] = 201 [2 2], provided z;, 2ES and Y v, 2. ES.

PROOF. (a)—(c) are easily verified. We shall prove (d). Since 2;, 2ES
we have z;=x,y;, 2=xy and also u= »_r_, 3;=vw with x,, x, vEL, ¥,
vy, WER. Let us assume that 2y, 2, - + -, 25, « are fixed while y is vari-
able. We have: (u, 2)=(vw, xy)=w"2%(v, x)(w, y) or (v, x)(w, ¥)
=w? > " (v, x¥) = 2y (%4 %) (¥s ¥). Now let us assume that
(v, ) 0. This can be done without loss of generality. Then we can
write (x;, x) =Ni(v, x) for some complex \;, 2=1, 2, - -+, # and so
we have:

@, B)(w, 5) = ﬁlxe(v, D (ya y) = (0, 2) z: ey 9)

or (w, y)=(2_t1 Nys, ¥). It can be written (w— D _m; Ny, ¥) =0,
where y is an arbitrary element in R. This simply means that w
= > "1 Ay (note that w, yER).

Now let us take y so that z=xy. Then we have:

1 1 d
[u’ Z] = [v'w, x)’] = ";{('I}, x)(yl) wl) = ;:(7"! x) (yla Z x‘yi)

i=l

1 2 [ 1 2 1o
= — 2 N, D)y, 3) = — 2 (%, ©)(¥, 93)
ot o1 ot
= E [xﬁ" Vi xy] = E [ziv z]'
=1 =1

Now let I be the set of all finite sums of elements in S, i.e., I is
the set of all elements of the form > 7., x;y; with x;EL, y;ER. It is
easy to see that I is a two-sided ideal dense in 4.

LEMMA 6. The function [ , | has a unique extension to I, which has the
properties of a scalar product.

Proo¥. If =D r.; z;and u= D ", u; with 2,ES, 4;ES, then we
define [z, u]= D :; [u, 2;]. It is easy to verify that [, ] is a scalar
product, using Lemma 5. The uniqueness of [, ] follows from (d).

LEMMA 7. If u, v€I then |uv| <|u||v|, where | | denotes the cor-
responding to [ , | norm.

ProoF. (a) We first take %, v& S, then u =x,y;, v =%y, with x;EL,
¥:ER. Then uv =x1y1x3y2 =Ax1€Ys, since yxs =Ae for some \, and
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|| = ] | 2] =—I>~1 ]l el

But |Maw?=|N (e, ) =| (e, €)] =] (32, €)] =| (2 30| < [loal] [I54]],
ie., [N S| [|3il]-
Hence

1 1
] = = el llsall = Ml Il = ] | 0]
w w

(b) Suppose that # &I and vES; then u= Y _r.; x;y;. We may as-
sume that (x;, x;) =0 for 45j. Then [x.y;, x;¥;]=0 and [x.y2, x;y0]
=0 and hence |u|2= "7, |y ? and |uv|2= DL, | x| Thus:

n
|uol> = 20 | waysl?[0]2 = [u]?[o]2
=1

(c) If u&T and v&1T we write v= ) 7, x:y; so that (3}, ¥}) =0 for
1#j and apply the technique of the previous paragraph.

LEmMA 8. If u €1 then |u| <||4||.

ProoF. If €S, then u=xy, xEL, yER and |u| =w=Y%| ||y
<w‘1”x” Hy”—-“u” since ||yY| Sw||y]] (Lemma 2). If u&1, then
u= D 1.1 #i= Qi1 Xyi; We may assume that (x;, x;) =0 for 757,
then (u;, u;)=0 and also [wi;, #;]=0 for i5j and hence |u|z

= 2wl = 20 [lud2=[lull.
COROLLARY. If #, v 1 then [u, v] <||ul|-||o]].

Thus the scalar product [, ] is continuous in the original topology;
hence can be extended to whole 4. In general 4 is not complete in
the new scalar product, so let A be the completion of 4 with respect
to [, ]. Let usextend continuously the algebraic operationsof 4 (in-
cluding the involution) to 4. Then it is easy to see that 4 is an H*-
algebra.

Indeed let x be an element in A having left adjoint x? in 4, then if
2, uES we have z2=x1y1, 4 =%y, x;EL, y;€R, 1=1, 2, and so

1 1 11 1 1 l
[zx, “] = [xlylx, xzyz] == (21, %2)(y2, 2 y1) = — (21, 22) (xys, ¥1)
w w

= [xlyl, xzyzx‘] = [z, uxl].

From this it is easy to verify that [yx, z]= [y, zx!] for all y, sE 4.
Similarly [xy, z]= [y, x'z] for all y, 2E4 and it is easy to show that
| x| = le for all & A4 having left adjoint, from which it follows that
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the involution x—x! can be uniquely extended to whole 4 in such a
manner that [xy, 2] = [y, 2] and [yx, z]= [y, 2x!] hold for all y, zin
A.

Now we are in a position to prove the following theorem:

THEOREM 3. Every simple complemented algebra A is isomorphic to
an algebra of operators a of the Hilbert Schmidt type on a Hilbert space
such that tr((aa)*aa) < o where a is some (unbounded) self-adjoint
operator with the domain dense in the Hilbert space.

ProOOF. Above we constructed the H*-algebra 4 in which 4 is
dense. 4 is isomorphic to the algebra of operators of the Hilbert
Schmidt type on some Hilbert space H (it is easy to verify that 4 is
simple). In particular we may take H to be the closed ideal e, where
e is the above considered primitive left projection. The isomorphism
is set up as follows: if a &4 corresponds to the operator T and xEed,
then T'(x) =xa.

Now let us consider e4 and eA. Since the scalar product [, | of 4
restricted to eA is continuous with respect to the original norm there
exists a bounded self-adjoint operator B8 defined on ed4 such that
[a, 8] = (B(a), B(})) holds for every a, b&eA. One can easily see that
B is also continuous with respect to I-norm (corresponding to

D:|8@)| =8| =|8]l |8 =[|8]| |a| . Thus B can be extended
to whole eA.

Snce the mapping a—a! is 1-1 (follows from the fact that 4 is
semi-simple), B is 1-1 also (note that (8(a), B(8)) = [a, b]=w—4(b}, a?)).
Since f is also self-adjoint the range of 8 (even if 3 is restricted to e4)
is dense in e4. Now let x be any member of e4 and let x, be a sequence
of elements in the range of B approaching x in “ H-norm. Then x,—x
also in | l-norm Let y, be the sequence such that B(y,) =x,. Then
Iy,, y,,,[ —”ﬁ(y,,) B(y,,,)” —”x,,—x,,.” i.e. ¥, is a Cauchy sequence.
Therefore there is an element y in ed such that y,—y in | l-norm
Then we have x =8(y) and so the range of 8 extended to e is entire
eA. Hence there exists an (unbounded) operator o with the domain
dense in ed such that (a, b) = [a(a), a(b)] holds for every a, bEeA.

Let us show that a(a) =aa for every aE€ed where aa means oper-
ator defined by a(a(x)) (x is an element in the Hilbert space). But
a(x) =xa if x€ed. So it is sufficient to show that a(xa) = x(ex(a)). But
it follows from the fact that xEed, a€ed and a(a)Eed: a(xa)
=a(exea) =a(hea) =Aa(ea) =Nea(ea) =exea(a) =xa(a), where N\ is
some scalar such that exe=M\e.

Thus we have (a, b) = [aa, ba]=tr ((ba)*ac) for every a, bCeA.
One can quite easily show (using Lemma 1) that this is true for every
a, bEA.
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A BOUNDARY LAYER PROBLEM FOR AN ELLIPTIC
EQUATION IN THE NEIGHBORHOOD OF A
SINGULAR POINT!

VICTOR J. MIZEL
We consider the first boundary value problem for
Lu = eAu + A(x, y)u, + B(x, y)uy + C(x, y)u = D(x, y)

on a region R under the following hypotheses

I. R is an open simply- or multiply-connected region in the (x, ¥)
plane whose boundary .S consists of a finite number of simple closed
curves, and R+S is contained in an open connected region R,
throughout which 4 (x, ¥), B(x, ¥), C(x, »), and D(x, y) are of class C®.

II. Along each closed curve of S the functions giving %, v, and the
boundary value # in terms of arclength are of class C®.

III. C(x, y) <0 on R,.

IV. The system (for characteristics of the abridged (e=0) equa-
tion)

dx

(1) E = - A(x! 3’), 'Et' = - (xr y)

has as its singularities on R+.S a finite number of stable attractors
Plv ) Pn-
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1 The author wishes at this point to express his gratitude to Professor N. Levinson
who originally suggested the problem to him and who gave him encouragement
throughout.



