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Let A be a Banach algebra with a Hilbert space norm (norm de-

fined by a scalar product). We shall call A a right complemented

algebra if it has the property that the orthogonal complement of a

right ideal is again a right ideal. This notion was introduced in the

author's doctoral thesis [5]. It was proved that under certain addi-

tional assumptions every right complemented algebra is left comple-

mented. We shall prove this theorem for a general right comple-

mented algebra. We shall also show that the most general simple

right (left) complemented algebra is of the following form.

Example. Let a be a (possibly unbounded) self-adjoint linear oper-

ator with domain dense in a Hilbert space 77 and the range being a

subset of H. Let A be the algebra of all linear operators a of the Hil-

bert Schmidt type on 77 such that \aa\ < °°, where | | is the trace

norm of an operator: |a|2 = tr (a*a). Then A is a right (as well as

left) complemented algebra in the scalar product (a, b) = [aa, ba]

= tr (aa(ba)*).

We shall use the following terminology (see [5]). A Banach algebra

shall be called simple if it is semi-simple and has no proper two-sided

ideals except those which are dense in whole algebra. We shall say

that xl is the left adjoint of x if (xy, z) = (y, x'z) holds for all y, z in

the algebra. A left projection e is a left self-adjoint (nonzero) idem-

potent; a primitive left projection is a left projection which cannot be

written as a sum of two doubly orthogonal left projections (compare

with W. Ambrose [l]). The orthogonal complement of an ideal 7 will

be denoted by 7P.

We have proved in [5 ] that every simple right complemented alge-

bra has a primitive left projection. So we begin by proving:

Theorem 1. Let A be a simple right complemented algebra and let e

be a primitive left projection in A. Then every element in eA has a left

adjoint.

Proof. Let aEeA; then ea=a. We may assume that aej^O (other-

wise we consider b — a-\-e for which be9*0). Then a2 = eaea=\a, i.e.,

a is a multiple of some idempotent/. Consider the closed regular right

ideal  Q={z—fz\zEA}, f is a relative identity of Q.  We write
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f=ei+u with eiCQ", «£(?; then ei is a left projection and fei=f,

eif = ei. Hence eei9^0 (note that eie^O also) and so we have: eei = ee\f

= eeief = \ief=pf, i.e., fl = l/p(eie). Hence a also has a left adjoint.

Theorem 2. The set of elements in a simple right complemented alge-

bra A having left adjoint is dense in A.

Proof. Let F= {d} be the family of all primitive left projections

in A. Let R be the closed right ideal generalized by F, i.e., R is the

closure of the linear space spanned by all elements of the form e,x,

eiCF, x£^4. It follows from Lemma 1 that the set of elements in R

having a left adjoint is dense in P. It remains to show that R=A.

Suppose Rt^A, then Pp?^(0). Let a£Pp be an element which does

not have a right quasi-inverse. Consider the right regular ideal

Q = closureof {ax+x|x£^4} for which —a is relative identity. We

write — a = e+u withe£@p, uCQ- Then it is easy to see that e is a left

projection (of course e?*0) such that eu = 0 (compare with [5, Lemma

2]). Thus eCF and hence (ea, ea) = (ea, a)=0, ea = 0. But on the

other hand — ea = e(e+u) =e, which is a contradiction. Thus R = A.

Corollary. Every semi-simple right complemented algebra A is a left

complemented algebra; the set of elements in A having right adjoint is

dense in A.

From now on we may refer to a semi-simple right complemented

algebra simply as a "complemented algebra."

Now we proceed with the second part of our paper. Let ibea sim-

ple complemented algebra and let e be a primitive left projection in

A. We consider the ideals L = Ae and R = eA. Every element in R has

a left adjoint while L has a dense subset of elements having left ad-

joint. We shall show that A is a dense subalgebra of a suitably con-

structed ZP*-algebra. It will be done by proving a series of lemmas in

which A, e (and hence L and R) are fixed once and for all.

Lemma 1. If xi, x2CL and yu y2CR, then (xiyi, x2y2) =w_2(xi, x2)

• (yu y*) where w = ||e||.

Proof. Since x'2XiCeAe we have X2Xi=Xe for some complex \(eAe

is isomorphic to the complex field [5, Lemma 7]). Then (xi, x2)

= (xi, x2e) = (x'2xi, e) = (Xe, e) =X||e||2 = Xco2 and (xryi, x2y2) = (x2Xiyu y2)

= (\yi. ^2) =X(yi, y2) =ar2(x1) x2)(yu y2).

Corollary. If xCL and yCR then \\xy\\ =w-1||x|| ||y||.

Lemma 2. 7/x£P then ||x'|| ^w||x||.

Proof. If x£P, then xxl=\e for some positive X (we again use the
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fact that eAe is isomorphic to the complex field). So we have:

\\xl\\* = (xle, x'e) = (xxl, e) = X(e, e) = x||e|| -||e|| = ||Xe|| -||e||

= \\xxl\\ -||e|| 5S ||x|| -llx'H ||e||

or ||x'||^||x||-|H|=cu||x||.

Lemma 3. If an element has the form z= E?-i *Cfi with X%EL, yiER,

then Xi, x2, • • • , x„ can be so chosen in L that (xi, xf) =0 for i^j; also

yi, Vi, ■ • • . yn can be so chosen in R that (y\, yj) =0 for i^j.

Proof. The lemma is easily proved by induction.

Now consider S = LR = AeA. We define the function [, ] on SXS

by setting

[xiXi, y2y2] = — (xi, x2)(y2, yO       whereto = ||e||.
(a*

(It is understood that Xi, x2£7,, yi, y2G7^.)

Lemma 4. The function [ , ]is independent of the choice of the primi-

tive left projection e.

Proof. Let ei and e2 be any two primitive left projections. Suppose

Zi = Xiyi, i = l, 2, with XiEAei and yiEdA. Then [xiyi, x2y2]i

= l/u\(xi, x2)(y\, y[), where oji = ||ei||. We shall show that ZiEAe2A

and that [zi, z2]i= [zi, z2]2, where [ , ]2 is the above function defined

with respect to e2.

It can be easily shown that there are elements ei2 and e2i in A such

that e[2 = e2i, ei2e2i = ei, c2iei2 = e2, ei2e2e2i = ei and e2i«iCi2 = e2. Then

Zi = Xiyi = Xieiyi — Xiei2e2e2iyi and hence ZiEAe2A. Also

[zi, z2]2 =  .,   ,,    (xiei2, x2ei2)(y2eu, yien)

Mr

1 (xi, x2)(ex2, en) (y2, yi)(ei2, en)

(e2i«12, esiei2)2 wi2 «i2

11 i     i
=-——7 (xi, x2)(y2, yi)(«i2, eu)2

(en, en)'  ui*

1 i     i        p i
= —- (*i, x2)(y2, yi) = [zi, z2Ji.

Lemma 5. The function [ , ] has the following properties:
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(a) [Xx,y]=X[x, y]

(b) [x, y]=complex conjugate of [y, x],

(c) [x, x] 2:0 and [x, x] =0 if and only if x = 0.

(d) [E"-i z<> z] = E"-i [z'< ZL provided z{, z£5 and ^?_! Zi£5.

Proof, (a)-(c) are easily verified. We shall prove (d). Since z,-, z£5

we have z< = x,y,-, z = xy and also u= E"-i 2, = flw with x„ x, !>££, y,-,

y, w£P. Let us assume that Zi, z2, • • • , z„, x are fixed while y is vari-

able. We have: (u, z) = (vw, xy)=w~2(v, x)(w, y) or (v, x)(w, y)

= w2E"-i (xty*> xy)= E"=i (x«> x)(yi'i y)- Now let us assume that

(v, x)^0. This can be done without loss of generality. Then we can

write (xi, x) = X,(t>, x) for some complex X,-, t = l, 2, • • • , n and so

we have:
n n

(v, x)(w, y) = X) x<(». x)(yit y) = (», x) X) (*#<. ?)

or (w, y) = (E"-i ^<V«> J)- It can be written (w— Y^l-i ^<y<i 30 =°.
where y is an arbitrary element in R. This simply means that w

= E"-i ^iy< (note that w, yCR).
Now let us take y so that z = xy. Then we have:

1 1 /       "        A
[u, z] = [vw, xy] = — (v, x)(y\ wl) = — (v, x) ( y\ 2 A<y<)

«4 W4 \ j_, /

= —- E *•(»> *)(y, yi) = —- E (*<. *)(>■. y»)
CO4    i_l W4    ,=1

n n

= E [*<i ?< xy] = 2 [**. zl-
»=i t=i

Now let / be the set of all finite sums of elements in S, i.e., I is

the set of all elements of the form / "_i x,y< with x»£Z,, yiCR- It is

easy to see that J is a two-sided ideal dense in A.

Lemma 6. The function [ , ] has a unique extension to I, which has the

properties of a scalar product.

Proof. If z= E*-i z«' and u= E"-i ui Wltn z>CS, UjCS, then we

define [z, u] = E<< [M«"> zi\- It is easy to verify that [ , ] is a scalar

product, using Lemma 5. The uniqueness of [,] follows from (d).

Lemma 7. If u, vCI then \uv\ £>\u\ |z>|, where | | denotes the cor-

responding to [ , ] norm.

Proof, (a) We first take u, vCS, then w=xiyi, v = x2y2 with x,£L,

yiCR- Then KP=xiyix2y2 = Xxiey2, since yix2=Xe for some X, and
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\uv\   =   |X|  | xiy2\   =— |X| •||x1||-||y2||.

But  |X|u2=|x| (e, e) = | (Xe, e)| = | (yix2, e)\ = | (x2, yi)| ^||x2|| \\y[\\,

i.e., IXl^co-^x.lHlyiH.
Hence

Ml s^MI-Ml^NHI»IM MM.
or or

(b) Suppose that uEI and vES; then u= E"-i x>y»- We may as-

sume that (xi, xf) =0 for i^j. Then [x^y,-, Xj-y,-] = 0 and [x,ysz>, Xjy,v\

= 0 and hence |w|2=E"-i |x,yi|2and |wz>|2=E"-i | x,y,«|2. Thus:

n

I uv 12 = E I xtyi |21 v |2 =  | m |21 v |2.

(c) If uEI and z>G7 we write v= E"-i *<y» so that (y\, y)) —0 for

iy^j and apply the technique of the previous paragraph.

Lemma 8. If uEI then \u\ ^||w||.

Proof. If uES, then u=xy, xEL, yER and |w| = w~2||x|| -\yl\

gco_1||x|| -||y|| =||w|| since ||y'|| ^co||y|| (Lemma 2). If uEI, then

u= E"=i u'= E"=i *C*; we may assume that (x,-, xy)=0 for *t*/,

then   (ui,  u/)=0  and  also   [«,-,  Wj]=0  for ty^j  and  hence   |m|2

= EU«.-NE?-1|kll*=N2-
Corollary. If u, vEI then [u, i;]^||«|| ■||i'||.

Thus the scalar product [ , ] is continuous in the original topology;

hence can be extended to whole A. In general A is not complete in

the new scalar product, so let A be the completion of A with respect

to [ , ]. Let us extend continuously the algebraic operations of A (in-

cluding the involution) to A. Then it is easy to see that A is an 77*-

algebra.

Indeed let x be an element in A having left adjoint xl in A, then if

z, uES we have z — Xiyx, u—x2y2, XiEL, ytER, i=l, 2, and so

[zx, u] = [xiyiX, x2y2] = —- (xh x2)(y2, x yx) = —- (xi, x2)(xy2, y{)
CO4 0>4

= [*iyi, x2y2x ] = [z, ux ].

From this it is easy to verify that [yx, z]= [y, zx1] for all y, zEA.

Similarly [xy, z] = [y, x'z] for all y, zEA and it is easy to show that

| x'| =| x| for all xEA having left adjoint, from which it follows that
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the involution x—>xl can be uniquely extended to whole A in such a

manner that [xy, z] = [y, x'z] and [yx, z] = [y, zx'] hold for all y, z in

A.
Now we are in a position to prove the following theorem:

Theorem 3. Every simple complemented algebra A is isomorphic to

an algebra of operators a of the Hilbert Schmidt type on a Hilbert space

such that tr((aa)*aa) < °o where a is some (unbounded) self-adjoint

operator with the domain dense in the Hilbert space.

Proof. Above we constructed the H*-algebra A in which A is

dense. A is isomorphic to the algebra of operators of the Hilbert

Schmidt type on some Hilbert space H (it is easy to verify that A is

simple). In particular we may take H to be the closed ideal eA, where

e is the above considered primitive left projection. The isomorphism

is set up as follows: if aCA~ corresponds to the operator T and x£e^4,

then P(x) =xa.

Now let us consider eA and eA. Since the scalar product [ , ] of A

restricted to eA is continuous with respect to the original norm there

exists a bounded self-adjoint operator /3 defined on eA such that

[a, b] = (/3(a), p(b)) holds for every a, bCeA. One can easily see that

/3 is also continuous with respect to | -norm (corresponding to

[, ]): |j8(a)J =||/32(o)||g||/3||||/3(a)||=||/3| |a| .Thus j8 can be extended
to whole eA.

Snce the mapping a—>al is 1-1 (follows from the fact that A is

semi-simple), j8 is 1-1 also (note that (B(a), /3(J)) = [a, b]=o)~l(bl, a1)).

Since /3 is also self-adjoint the range of |8 (even if /S is restricted to eA)

is dense in eA. Now let x be any member of eA and let x„ be a sequence

of elements in the range of /3 approaching x in || ||-norm. Then x„—>x

also in | | -norm. Let y„ be the sequence such that /3(yn) =x„. Then

|y»— ym\ =||/3(yn)—|8(ym)|| =||*n—*m||, i.e. y„ is a Cauchy sequence.

Therefore there is an element y in eA such that yn—^y in | | -norm.

Then we have x=/3(y) and so the range of j3 extended to eA is entire

eA. Hence there exists an (unbounded) operator a with the domain

dense in eA such that (a, b)= [a(a), a(b)] holds for every a, bCeA.

Let us show that a(a) =aa for every aCeA where aa means oper-

ator defined by a(a(x)) (x is an element in the Hilbert space). But

a(x) =xa if x£eX So it is sufficient to show that a(xa) =x(a(a)). But

it follows from the fact that xCeA, aCeA and a(a)CeA: a(xa)

= a(exea) = a(\ea) =\a(ea) =\ea(ea) = exea(a) = xa(a), where X is

some scalar such that exe = \e.

Thus we have (a, b)= [aa, ba]=tr ((ba)*aa) for every a, bCeA.

One can quite easily show (using Lemma 1) that this is true for every

a, bCA.
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A BOUNDARY LAYER PROBLEM FOR AN ELLIPTIC
EQUATION IN THE NEIGHBORHOOD OF A

SINGULAR POINT1

VICTOR J. MIZEL

We consider the first boundary value problem for

Lu = eA« + A(x, y)ux + B(x, y)uy -f- C(x, y)u = D(x, y)

on a region R under the following hypotheses

I. R is an open simply- or multiply-connected region in the (x, y)

plane whose boundary 5 consists of a finite number of simple closed

curves, and R + S is contained in an open connected region R0

throughout which A(x, y), B(x, y), C(x, y), and D(x, y) are of class C6.

II. Along each closed curve of S the functions giving x, y, and the

boundary value u in terms of arclength are of class C6.

III. C(x, y)<0 onRo.
IV. The system (for characteristics of the abridged (« = 0) equa-

tion)

dx dy
(1) - = - A(x, y),      -j = - B(x, y)

at dt

has as its singularities on R + 5 a finite number of stable attractors

Pi, • • • . Pn-
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1 The author wishes at this point to express his gratitude to Professor N. Levinson

who originally suggested the problem to him and who gave him encouragement

throughout.


