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1. Introduction. In recent years there have appeared two alge-

braizations of the first-order predicate calculus; i.e., the polyadic

algebras of Halmos [l; 2], and the cylindric algebras of Tarski [3; 4].

While polyadic algebras are the algebraic version of the pure first-

order calculus, cylindric algebras yield an algebraization of the first-

order calculus with equality. Since the pure calculus does not contain

any identifiable predicate, one cannot expect to find the algebraic

analogue of an equality predicate in a general polyadic algebra. It is

reasonable, however, to consider "adjoining" an equality predicate,

in some sense, to a polyadic algebra, and ask if one then obtains a

cylindric algebra. This is the procedure followed here. An e-algebra

is defined as a polyadic algebra with an equality predicate. We show

that every e-algebra is in a natural way a cylindric algebra. Con-

versely, it is shown that in the presence of an infinite supply of vari-

ables and a local finiteness condition, cylindric algebras are in a

natural way e-algebras, and the correspondence obtained in this way

between e-algebras and cylindric algebras is one-to-one.

2. Polyadic algebras. A quantifier (or, more explicitly, an existential

quantifier) on a Boolean algebra A is a mapping 3: A^A such that

(1) 30 = 0, (2) pS 3p, and (3) 3(p/\ 3q) = 3pA 3q for all p, qCA.

A polyadic algebra is a quadruple (A, I, S, 3), where A is a Boolean

algebra, I an arbitrary set whose elements are called variables, S is a

mapping from transformations of I into itself to Boolean endo-

morphisms on A (the transformations need not be one-to-one nor

onto), and 3 is a mapping from subsets of / to quantifiers on A,

satisfying the following conditions:

(Pi) 3(0)p=p for all pCA (0 shall denote the empty set

throughout).

(P2)   3(JVJK) = 3(J) 3(K) ior all subsets J and K of I.

(P3) 5(5) =/ (where 5 is the identity transformation on / and / is

the identity endomorphism on A).

(Pj)  S(o)S(t) =S(ot) for all transformations a and r on I.

(P6) If J CI and a and t are transformations on / which agree out-

side /, then S(o) 3(J)=S(t) 3(7).

(Ft) If J CI and r is a transformation which is one-to-one on

r-1/, then 3(J)S(t)=S(t)3(t~U).
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If pEA, then p will be said to be supported by the set 7if 3(1—J)p

= p. We will say that p is independent of the set K if 3(K)p=p, so

that J supports p if and only if p is independent of I —J. A polyadic

algebra will be called locally finite if each element p of the algebra is

supported by some finite set Jp. A transformation r will be called

finite if r agrees with 5 outside some finite set. If i and j are elements

of 7, the transformation which maps i onto j and every other element

of 7 (including j) onto itself will be called a replacement and denoted

by (i/j). If 7 is infinite, the algebra will be said to have infinite

degree. A quasi-polyadic algebra is a quadruple (A, I, S, 3), where

A is a Boolean algebra, 7 a set, S a mapping from finite transforma-

tions on 7 to Boolean endomorphisms on A, and 3 is a mapping from

finite subsets of 7 to quantifiers on A, satisfying the conditions:

(Qi)   3(0)p=p whenever pEA.

(Q2) 3(jyJK) = 3(J) 3(K) whenever J and K are finite subsets of
7.

(Q.) S(8)=f.
(Q4) 5(<r)5(r) =S(<rr) whenever a and r are finite transformations

on 7.

(Q6) If a and r are finite transformations on 7, if 7 is a finite sub-

set of 7, and <r = r outside J, then S(o-) 3(J) =S(r) 3(7).

(Qs) If t is a finite transformation on 7, if 7 is a finite subset of 7,

and if r is one-to-one on r-17, then 3(J)S(t) =S(t) 3(t~1J).

(Q7) If pEA, then there exists a cofinite set J (i.e., 7 — 7 is a finite

set) such that 3(K)p = p whenever K is a finite subset of 7.

We shall need the following result concerning quasi-polyadic alge-

bras from [2].

Theorem. If (A, I, S, a) is a quasi-polyadic algebra, then (i) there

exists a mapping S* from transformations on I to Boolean endomor-

phisms of A such that S*(t) =S(t) whenever t is a finite transformation,

(ii) there exists a mapping 3* from subsets of I to quantifiers on A

such that 3*(J) = 3(7) whenever J is a finite set, (iii) the quadruple

(A, I, S*, 3*) is a locally finite polyadic algebra, and (iv) the mappings

S* and 3* are uniquely determined by (i), (ii), and (iii).

We shall also need the fact, established in [2], that if t is a finite

transformation on 7 and 7 is a finite subset of 7, then there is a finite

ordered collection (n, • • • , r„} of replacements on 7 such that

r = ti • • • rn on 7.

3. e-Algebras. If e( , ) is the equality predicate for the first-order

functional calculus with equality, then it is well known that e( , ) is

characterized by the reflexive and substitution properties. Moreover,
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if we have e(x, y), then the transformation which maps x onto z

yields the equality of z and y; i.e., e(z, y). More generally, the effect

on e(x, y) of a transformation on the variables is obtained by allow-

ing the transformation to act on the variables x and y directly. These

considerations furnish the motivation for Definitions 1 and 2. (Con-

dition (2) of Definition 2 asserts essentially that if p is true and i=j,

then p is true with i replaced by j; i.e., the substitution property.)

Definition 1. Let (A, I, S, 3) be a polyadic algebra. A binary

predicate ior A is a function p:lXl—>A such that S(r)p(i,j) =p(ri, rj)

ior every transformation r on I.

Definition 2. A polyadic algebra with equality (or, an e-algebra)

is a polyadic algebra (A, I, S, 3) for which there exists a binary

predicate e ior A such that (1) e(i, i) = 1 for all iCI, and (2) pAe(i,j)

^S(i/j)p for all i, jCI and pCA. We shall denote the e-algebra by

(A, I, S, 3,e).

Definition 3. A cylindric algebra is a Boolean algebra A, together

with a function C from a set I to quantifiers on A, and a function

d: IXI->A such that (1) C(h)C(j) = C(j)C(h), (2) d(i, i) = 1,(3) d(i,j)
= C(k)[d(i, k)Ad(j, k)], and (4) C(i)[pAd(i, k)]AC(i)[p'Ad(i, k)]
= 0 whenever i,j, h, k are elements of /such that i^k andj^k. The

cylindric algebra will be denoted by (A, I, C, d).

Definition 4. A cylindric algebra (A, I, C, d) will be called

locally finite if for each pCA, the set {i£E/| C(j)p=p} is cofinite.

We note that Definitions 3 and 4 are in an obvious way equivalent

to the definitions given by Tarski in [3].

Definition 5. An e-algebra (A, I, S, 3, e) will be called cylin-

drizable if there exists a cylindric algebra (Ai, Ii, C, d) such that

Ai = A, Ii = I, d = e, and C(i) = 3(i) for all i£J.
Definition 6. A cylindric algebra (A, I, C, d) will be called

equalizable if there exists an e-algebra (Ai, Ii, S, 3, e) such that

Ai = A, Ii = I, e = d, S(i/j)p = C(i)[pAd(i, j)] whenever i^j, and

3(i) = C(i) ior all iCL
Let (A, I, S, 3, e) be an e-algebra. We shall need the following

lemmas.

Lemma 1. Whenever i^j, S(i/j)p = 3(i) [pAe(i, j)] for all pCA.

Proof. 3(i)[pAe(i, j)]^3(i)S(i/j)p = S(i/j)p, since i^j. Also,

S(i/j)P = S(i/j)pAe(j, J)=S(i/j) [pAe(i, j)]^S(i/j) 3(i) [pAe(i, j)]
= 3(i)[pAe(i,j)].

Lemma 2. For all i,jCI, e(i,j) =e (j, i).



1957] CYLINDRIC AND POLYADIC ALGEBRAS 179

Proof. By symmetry, it is sufficient to show that e(i,j)^e(j, i) for

all i, JET But e'(j, i)Ae(i, j)^S(i/j)e'(j, i) =e'(j, j) =0.

Theorem 1. Every e-algebra is cylindrizable.

Proof. Let (A, I, S, 3, e) be an e-algebra. We define d = e, and let

C(k) = 3(k) for all kEI- It is clear that C maps 7 into quantifiers on

A which commute, and that d(i, i)=e(i, i) = l for all i£7. If i^k,

j^k, then, by Lemmas 1 and 2, C(k)[d(i, k)/\d(j, k)]= 3(k)[e(i, k)
Ae(k, j)] =S(k/j)e(i, k)=e(i, j)=d(i, j). Finally, if i^k and pEA,
we have 3(i)[pAd(i, k)]A3(i)[p'Ad(i, k)]=S(i/k)pAS(i/k)p'
= S(i/k)(pAP') =0, so that (A, I, C, d) is a cylindric algebra.

4. Cylindric algebras. Let (A, I, C, d) be a locally finite cylindric

algebra with 7 infinite. We shall show that (A, I, C, d) is equalizable.

We let e = d, 3(0)p=p, 3(j) = C(j), S(j/j)p = p, and S(i/k)p
= C(i)[pAd(i, k)] whenever pEA, and i, j, kEI such that i^k,

and we define S(r)p for pEA and r a finite transformation on 7, by

finding a finite set of replacements on 7, say \t\, • ■ • , r„} such that

T = n • • ■ r„ on some finite support of p and letting S(r)p = S(t{) ■ ■ ■

S(rn)p. Such a finite set of replacements exists, as we have remarked

above, but it will be necessary to show that the definition is unam-

biguous. If 7= \ji, ■ ■ ■ ,jn} is a finite subset of 7, we define 3(7) by

the equation 3(7) = C(ji) ■ ■ ■ C(jn). Since the values of C commute,

and since (as is easily verified) the product of two commuting quanti-

fiers is again a quantifier, 3(7) is unambiguously defined and is a

quantifier.

The proofs of the next four lemmas consist of straightforward com-

putations, and are omitted.

Lemma 3. If i^j, then S(i/j) is a Boolean endomorphism on A.

Lemma 4. (1) Whenever i^j, k^j, S(i/k)3(j)= 3(j)S(i/k),

(2) S(j/i) 3(j) = 3(7) for all i, jEL and (3) 3(j)S(j/i) =S(j/i) when-
ever i^j.

Lemma 5. If i,j, k, h are distinct elements of I, then (1) S(i/j)S(k/h)

= S(k/h)S(i/j), (2) S(k/h)S(k/j)=S(k/j), (3) S(k/j)S(k/j)=S(k/j),
(4) S(i/j)S(k/i)=S(k/j)S(i/j), (5) S(i/j)S(k/j)=S(k/j)S(i/j).

Lemma 6. If 3(j)p = p, then S(j/i)S(i/j)p = p whenever pEA and
i,jEL

Definition 7. Let a be an ordered collection consisting of an even

number of replacements on 7, say a= {oti, ■ • • , a2n}, «2i0, and 7 a

finite subset of 7. We shall say that a is J-normal if there are distinct
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elements ki, • • • , knCJ, distinct elements t'i, • • • , inCI — J, and

(not necessarily distinct) elements ji, ■ ■ ■ , j„CJ such that (1) ar

= (ir/jr), and (2) an+r = (kr/ir), r = l, 2, ■ ■ ■ , n.

Definition 8. If a = {au ■ ■ ■ , an} and fi = {fii, • • • , fim} are

finite ordered collections of replacements on /, J any subset of /, and

PCA, we will say that a and fi are (p, J)-equivalent if (1) «i • • • anj

= fii ■ ■ - fimj whenever jCJ, and (2) S(a)p = S(fi)p, where S(a)

= S(ai) ■ ■ ■ S(an) and S(8)=S(fii) ■ ■ ■ S(fim). If a and fi are (p, in-
equivalent for every pCA, we shall say that a and fi are equivalent.

Definition 9. If (i/j) is a replacement on I, we shall refer to i as

the essential domain of (i/j), and to j as the essential range of (i/j).

Lemma 7 enables one to study the effect of a finite transformation

t on a finite set by examining the image of each element separately.

The method is one commonly used in mathematical logic; i.e., map-

ping the element i first into another element/ far from the scene of the

action, and then mapping/ into r(i).

Lemma 7. Let a be a finite ordered collection of replacements, pCA,

and I a finite support of p which contains all essential domains and es-

sential ranges of elements of a. Then there exists a finite ordered collec-

tion 4> of replacements which is J-normal and (p, J)-equivalent to a.

Moreover, if <j>= {d>i, • • • , 4>2m}, the essential domains of <pi, ■ ■ ■ , <pm

may be chosen arbitrarily from I —J, provided they are distinct, and the

essential domains of <f>m+i, • • • , 4>2m are all elements of J.

Proof. The proof consists of successively transforming a into vari-

ous ordered collections, the last of which is cj>, with the property that

each is (p, J)-equivalent to the preceding one. The details are

omitted.

Lemma 8 states essentially that if two transformations agree on a

(finite) set P which supports an element q of A, except possibly on

a subset K of P of which q is independent, then they produce the

same effect on q.

Lemma 8. Let a={cti, ■ ■ ■ , ani} and a*= {a*, • • • , a^} be

finite ordered collections of replacements on I, pCA, P a finite support

of p, and K any finite subset of I, such that ai • • ■ anj=a* ■ • • <x*j

whenever j CP — K. Then S(a) 3(K)p = S(a*) 3(K)p (cf. Definition 8).

Proof. Applying Lemma 7 to a and a* and a finite set J which

contains P and satisfies the hypotheses of Lemma 7 with respect to

a and a*, we obtain finite ordered collections fi and fi*. These in

turn can be transformed into collections y and y* such that 7 = 7*.

Since a, fi, 7 and a*, fi*, y* are seen to be (B(K)p, J)-equivalent, it



i957l CYLINDRIC AND POLYADIC ALGEBRAS 181

follows    that    S(a)3(K)p = S(p)3(K)p = S(y)3(K)p = S(y*)3(K)p

= S(P*)3(K)p = S(a*)3(K)p.

Corollary 1. The definition of S(t) is unambiguous for every finite

transformation t.

Proof. Let a= {ai, ■ ■ ■ , an} and a*= {a*, • • • , am} be finite

ordered collections of replacements such that ai • • ■ an=r on the

finite support Q of p, and a* ■ ■ ■ a* = t on the finite support Q* of p.

Then P = QC\Q* is a finite support of p, and «i ■ • ■ an = r=a* ■ ■ -a*

on P. We apply Lemma 8 with K = 0, to obtain S(a)p = S(a*)p.

Corollary 2. If a, t are finite transformations on I which agree out-

side a finite set K, then S(a) 3(K) =S(t) 3(K).

Proof. Let pEA. We find a finite ordered collection a

= {ai, • • • , a„} of replacements such that «i • • •o, = nona finite

support Pi of p, and a finite ordered collection P= {ft, • ■ • , Pm}

such that Pi ■ ■ ■ Pm = T on a finite support P2 of p. Then «i • • • an

= Pi • ■ ■ Pm on P — K, where P = Pi(~\P2. It follows from Lemma 8

that S(a) 3(K)p = S(a) 3(K)p = S(P) 3(K)p = S(r) 3(K)p.

Lemma 9. Let t be a finite transformation on I, J a finite subset of I.

If r is one-to-one on r_17, then S(r) 3(r_17) = 3(J)S(t).

Proof. If J = 0, the lemma is trivial. Assume first that 7= {j}.

Let pEA, and let a be a finite ordered collection of replacements,

a= {ai, - • • , an}, such that (1) «i • • • an=r on a support 7<"i of p,

and (2) (ai ■ ■ ■ an)~1j = r~1j. (It is possible to find such a collection,

for example, by considering t\ (I —J).) Let K be a finite support of

p which includes all essential domains and essential ranges of ele-

ments of a, as well as j and k=r~1j= (ai • ■ • a„)_1_/. By Lemma 7, we

can find a finite ordered collection of replacements P={Pi, • ■ • , p2m}

which is X-normal and (3(j)p, K)-equivalent to a. The proof for

7= {j} then follows from Lemmas 4, 5, and 6 by consideration of

the cases j = k and j^k.

If 7= {ji, ■ ■ ■ ,jn},n — l, and the lemma holds for all sets 7i with

fewer than n elements, let r be one-to-one on r_17. Then r is one-to-

one on r-1ii and on r_17i, where 7i = 7—{j:i}, and 3(J)S(t)

= 3(70 3(ii)5(r) = 3 (7i)5(r) 3 (r^ji) = S(t) 3 (t-UiKJt^Ji) = S(r)
3(7-1/).

We are now in a position to prove the principal theorem.

Theorem 2. Every locally finite cylindrical algebra of infinite degree

is equalizable.
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Proof. Let (A, I, C, d) be a locally finite cylindric algebra with I

infinite. We define e, S, and 3(/) ior j CI as in Definition 6, and for

J finite, J = {/i, • • • , /»}, we define 3(J) = C(ji) • ■ • C(jn). It fol-

lows from our earlier remarks and Corollary 1 to Lemma 8 that the

definitions of 3(7) and S(r) are unambiguous and that 3(J) is a

quantifier for any finite subset J oi I and any finite transformation

t on I. An easy induction based on Lemma 3 shows that S(r) is a

Boolean endomorphism for any finite r. We shall see that the postu-

lates for a quasi-polyadic algebra are satisfied by (A, I, S, 3), and it

will follow from the theorem on quasi-polyadic algebras quoted above

that (A, I, S, 3) determines a unique polyadic algebra.

Since S(j/j)p = p for all jCI and pCA, it follows that S(8)p = p,

so that Qi holds. Postulates Q2, Q3, Qi, and Q7 follow immediately from

the definitions, and @6 is Corollary 2 to Lemma 8, while Qe is Lemma

9. We must show that e is a binary predicate satisfying conditions

(1) and (2) of Definition 2. Since e = d, we know that e maps IXI into

A, and e(i, i) = l ior all iCI- To show that S(r)e(i, j) =e(ji, rj), it

follows from the definition of 5 that it is sufficient to verify the

equation S(k/h)e(i, j)=e((k/h)i, (k/h)j) ior all i, j, h, kCI- If

k(+.{i, /} or if k = h, then the equation holds trivially, since e(i, j) is

supported by {»,/}. Suppose, then, that k=i, k^h. Then S(k/h)e(i,j)

= 3(i)[d(i, j)Ad(i, h)]=3(i)[d(j, i)Ad(h, i)]=d(j, h)=d(h, j)
= e((k/h)i, (k/h)j). The case k=j, k^h is similar. Now suppose pCA.

Then pAe(i, /)= 3(i)[pAd(i, j)]=S(i/j)p whenever i^j, and the

inequality holds trivially when * =/.

Theorem 3. Let 21 — (A, I, S, 3, e) be a locally finite e-algebra of

infinite degree. Let $8 = (A, I, C, d) be the locally finite cylindric algebra

of infinite degree arising from 21 by means of Definition 5 (cf. Theorem

1). Let 2li be the e-algebra arising from S3 by means of Definition 6

(cf. Theorem 2). Then 2Ii = 2l.

Proof. Let 2li = L4, I, 3i, Si, ex). It follows from definitions that

3i(&) = C(k) = 3(k) ior all kCI, and therefore that 3X(J) = 3(7) for

any finite J. Also, we have ei=d = e. If pCA and i,jCI, i^j, then

Si(i/j)p = C(i)[pAd(i, j)]=3(i)[pAe(i, j)]=S(i/j)p by the defini-
tion of Si and Lemma 1. An easy induction shows that Si(t) =S(t)

ior any finite r. The theorem follows from the uniqueness assertion

of the theorem on quasi-polyadic algebras.

Theorem 4. Let $5 = (A, I, C, d) be a locally finite cylindric algebra

of infinite degree. Let 21 = (A, I, S, 3, e) be the e-algebra arising from 58

by means of Definition 6 (cf. Theorem 2). Let S3i= (A, I, G, dx) be the
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cylindric algebra arising from % by means of Definition 5 (cf. Theorem

1). Then% = S8i.

Proof. From the definitions, we have di = e = d, and Ci(k) = 3(k)

= C(k) for all &G 7.
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