CYLINDRIC AND POLYADIC ALGEBRAS
BERNARD A. GALLER

1. Introduction. In recent years there have appeared two alge-
braizations of the first-order predicate calculus; i.e., the polyadic
algebras of Halmos [1; 2], and the cylindric algebras of Tarski [3;4].
While polvadic algebras are the algebraic version of the pure first-
order calculus, cylindric algebras yield an algebraization of the first-
order calculus with equality. Since the pure calculus does not contain
any identifiable predicate, one cannot expect to find the algebraic
analogue of an equality predicate in a general polyadic algebra. It is
reasonable, however, to consider “adjoining” an equality predicate,
in some sense, to a polyadic algebra, and ask if one then obtains a
cylindric algebra. This is the procedure followed here. An e-algebra
is defined as a polyadic algebra with an equality predicate. We show
that every e-algebra is in a natural way a cylindric algebra. Con-
versely, it is shown that in the presence of an infinite supply of vari-
ables and a local finiteness condition, cylindric algebras are in a
natural way e-algebras, and the correspondence obtained in this way
between e-algebras and cylindric algebras is one-to-one.

2. Polyadic algebras. A quantifier (or, more explicitly, an existential
quantifier) on a Boolean algebra A4 is a mapping 3: A—A4 such that
(1) 30=0, (2) p=3p, and (3) I(pA 3q) =3p A g for all p, g= 4.
A polyadic algebra is a quadruple (4, I, S, 3), where 4 is a Boolean
algebra, I an arbitrary set whose elements are called variables, S is a
mapping from transformations of I into itself to Boolean endo-
morphisms on 4 (the transformations need not be one-to-one nor
onto), and 3 is a mapping from subsets of I to quantifiers on 4,
satisfying the following conditions:

(P)) 3()p=p for all p€A (& shall denote the empty set
throughout).

(Py) 3(JUK) = 3(J)3a(K) for all subsets J and K of I.

(P3) S(8)=f (where § is the identity transformation on I and f is
the identity endomorphism on 4).

(Py) S(0)S(r)=S(o7) for all transformations ¢ and 7 on I.

(Pg) If JCI and ¢ and 7 are transformations on I which agree out-
side J, then S(a)3(J) =S(r) 3(J).

(Pe) If JCI and 7 is a transformation which is one-to-one on
717, then 3(J)S(r) =S(r)3("1J).
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If pEA, then p will be said to be supported by the set Jif I(I—J)p
=p. We will say that p is independent of the set K if 3(K)p=p, so
that J supports p if and only if p is independent of I —J. A polyadic
algebra will be called locally finite if each element p of the algebra is
supported by some finite set J,. A transformation 7 will be called
fimite if T agrees with 8 outside some finite set. If 7 and j are elements
of I, the transformation which maps 7 onto j and every other element
of I (including j) onto itself will be called a replacement and denoted
by (¢/7). If I is infinite, the algebra will be said to have infinite
degree. A quasi-polyadic algebra is a quadruple (4, I, S, 3), where
A is a Boolean algebra, I a set, S a mapping from finite transforma-
tions on I to Boolean endomorphisms on 4, and 3 is a mapping from
finite subsets of I to quantifiers on 4, satisfying the conditions:

(Q1) 3(F)p=p whenever pCA.

(Q:) 3(JUK)=3(J)3a(K) whenever J and K are finite subsets of
I.

(Qs) S(0) =/

(Qs) S(0)S(r) =S(o7) whenever ¢ and 7 are finite transformations
on I.

(Qs) If o and 7 are finite transformations on I, if J is a finite sub-
set of I, and o =7 outside J, then S(o) 3(J) =S(r) 3(J).

(Qe) If 7 is a finite transformation on I, if J is a finite subset of I,
and if 7 is one-to-one on 7~1J, then 3(J)S(r) =S(v) a(r~1J).

(Q7) If p&4, then there exists a cofinite set J (i.e., I —J is a finite
set) such that 3(K)p =p whenever K is a finite subset of J.

We shall need the following result concerning quasi-polyadic alge-
bras from [2].

THeOREM. If (4, I, S, 3) is a quasi-polyadic algebra, then (i) there
exists a mapping S* from transformations on I to Boolean endomor-
phisms of A such that S*(r) = S(r) whenever 7 is a finite transformation,
(ii) there exists a mapping 3I* from subsets of I to quantifiers on A
such that 3*(J) = 3(J) whenever J is a finite set, (iii) the quadruple
(4, I, S*, 3%) is a locally finite polyadic algebra, and (iv) the mappings
S* and 3* are uniquely determined by (i), (ii), and (iii).

We shall also need the fact, established in [2], that if 7 is a finite
transformation on I and J is a finite subset of 7, then there is a finite

ordered collection {ri, - - -, 7.} of replacements on I such that
T=T11 -+ To0n J.

3. e-Algebras. If e( , ) is the equality predicate for the first-order
functional calculus with equality, then it is well known that e(, ) is
characterized by the reflexive and substitution properties. Moreover,
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if we have e(x, ¥), then the transformation which maps x onto z
yields the equality of z and ¥; i.e., e(z, y). More generally, the effect
on e(x, y) of a transformation on the variables is obtained by allow-
ing the transformation to act on the variables x and y directly. These
considerations furnish the motivation for Definitions 1 and 2. (Con-
dition (2) of Definition 2 asserts essentially that if p is true and ¢=j,
then p is true with 7 replaced by j; i.e., the substitution property.)

DEerinNiTION 1. Let (4, I, S, 3) be a polyadic algebra. A binary
predicate for A is a function p: I X I—A such that S(7)p (3, j) =p(4, 77)
for every transformation 7 on 1.

DEFINITION 2. A polyadic algebra with equality (or, an e-algebra)
is a polyadic algebra (4, I, S, 3) for which there exists a binary
predicate e for 4 such that (1) e(¢, 2) =1 for all ¢& I, and (2) p Ae(s, 7)
<S@E/j)p for all 4, jEI and p&EA. We shall denote the e-algebra by
4,1, S, 3,¢).

DEFINITION 3. A cylindric algebra is a Boolean algebra 4, together
with a function C from a set I to quantifiers on 4, and a function
d: IXI—A such that (1) C(h)C(G) =C(H)C(h), (2) d(z,2) =1, (3) d(3, 7)
=C(k)[dG, RN, B)], and (4) C(E) [pAd(G, B)JACE) [p' NG, k)]
=0 whenever 1, j, &, k are elements of I such that 2=k and j#k. The
cylindric algebra will be denoted by (4, I, C, d).

DEFINITION 4. A cylindric algebra (4, I, C, d) will be called
locally finite if for each pE A4, the set {jEI, C(j)p=p} is cofinite.

We note that Definitions 3 and 4 are in an obvious way equivalent
to the definitions given by Tarski in [3].

DEFINITION 5. An e-algebra (4, I, S, 3, e¢) will be called cylin-
drizable if there exists a cylindric algebra (4., I, C, d) such that
A=A, I,=1,d=e, and C(z) = 3(2) for all :& .

DEFINITION 6. A cylindric algebra (4, I, C, d) will be called
equalizable if there exists an e-algebra (4i, I, S, 3, e) such that
A=A, Ii=1I, e=d, S(i/j)p=CG)[p/\dGE, j)] whenever i%j, and
3(1) = C(2) for all zE€1.

Let (4, I, S, 3, e) be an e-algebra. We shall need the following
lemmas.

LEMMA 1. Whenever i, Si/j)p = 3() [p NeG, §)] for all pEA.

Proor. 3(i)[pAe(i, 7)< 3(G)S6E/5)p=S(/j)p, since i5j. Also,
SG/Np=SE/HpNel, ) =SG/5)[pNeG, 7)1SSGC/5) 36) [pAeG, )]
=a@)[pAel, /)]

LEMMA 2. For all 1, jE€I, e(3, j) =e (J, 7).
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ProoOF. By symmetry, it is sufficient to show that e(z, j) <e(j, ) for
all 4, jE€I. But €'(j, 1) \e(s, j) S S(2/7)e' (4, ©) =€’ (4, j) =0.

THEOREM 1. Every e-algebra is cylindrizable.

Proor. Let (4, I, S, 3, ¢) be an e-algebra. We define d =e¢, and let
C(k) = 3(k) for all k<. It is clear that C maps I into quantifiers on
A which commute, and that d(¢, 7) =e(z, 2) =1 for all :&1. If 154k,
j*=k, then, by Lemmas 1 and 2, C(k) [d(s, E) Ad(, k)] = 2(k) [e(s, k)
Ne(k, ))]1=S(k/7)e(i, k) =e(i, j) =d(, 7). Finally, if ik and pCEA4,
we have 3()[pAdGE, B)IAIE) [P’ NG, k)] =SGE/R)pASG/R)D’
=S@E/k)(p A\p’) =0, so that (4, I, C, d) is a cylindric algebra.

4. Cylindric algebras. Let (4, I, C, d) be a locally finite cylindric
algebra with [ infinite. We shall show that (4, I, C, d) is equalizable.
We let e=d, 3(D)p=p, 3()=C(), SG/Hp=p, and S@/k)p
=C@) [pANd(i, k)] whenever pEA, and 4, j, kETI such that ik,
and we define S(7)p for pE4 and 7 a finite transformation on I, by
finding a finite set of replacements on I, say {ri, - - -, 7.} such that
T=7y - - - T, ON some finite support of p and letting S(1)p=S(r1) - - -
S(r.)p. Such a finite set of replacements exists, as we have remarked
above, but it will be necessary to show that the definition is unam-
biguous. If J= {jl, s ,j,,} is a finite subset of I, we define 3(J) by
the equation 3(J)=C(j1) - - - C(j.). Since the values of C commute,
and since (as is easily verified) the product of two commuting quanti-
fiers is again a quantifier, 3(J) is unambiguously defined and is a
quantifier.

The proofs of the next four lemmas consist of straightforward com-
putations, and are omitted.

LEMMA 3. If 1], then S(i/j) is a Boolean endomorphism on A.

LemMMA 4. (1) Whenever <7#%j, k#j, S(i/k)3(j)=3(G)S@E/k),
(2) S3G/9) a@G) = 3(§) for all i, jEI, and (3) 3(4)S(j/i) =S(j/i) when-

ever 17%j.

LEMMA S. If 4, j, k, h are distinct elements of I, then (1) S(i/j)S(k/h)
=S(k/k)S(i/5), (2) S(k/m)S(k/5)=S(k/j), (3) S(k/7)S(k/j)=S(k/7),
(4) SG/5)S(k/i) =S(k/5)S(/5), (S) S(G/5)S(k/5) = S(k/5)S(/7).

LemmA 6. If 3(j)p=p, then S(j/i)S(i/j)p=p whenever pCA and
1, jE€I

DEFINITION 7. Let a be an ordered collection consisting of an even

number of replacements on I, say a= {al, cee, agn}, 7n=0,and J a
finite subset of I. We shall say that « is J-normal if there are distinct
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elements &y, - - -, k,&EJ, distinct elements 4, - - -, 7,&1—J, and
(not necessarily distinct) elements j;, - - -, 7,E&J such that (1) a,
=(4,/7,), and (2) anyr=(k./1,), r=1,2, - - -, n.

DeFINITION 8. If a={au, - - -, @} and B={By, - - -, Bn} are

finite ordered collections of replacements on I, J any subset of I, and
pEA, we will say that e« and 8 are (p, J)-equivalent if (1) oq - - - a.j
=0 - - Bnj whenever j&J, and (2) S(a)p=S(B)p, where S(a)
=S(a) - - - S(a,) and S(B)=S(B1) - - - SBn). If « and B are (p, I)-
equivalent for every p& A, we shall say that o and 8 are equivalent.

DEeriNiTION 9. If (7/) is a replacement on I, we shall refer to 7 as
the essential domain of (i/7), and to j as the essential range of (1/7).

Lemma 7 enables one to study the effect of a finite transformation
7 on a finite set by examining the image of each element separately.
The method is one commonly used in mathematical logic; i.e., map-
ping the element 7 first into another element j far from the scene of the
action, and then mapping j into 7(z).

LEMMA 7. Let o be a finite ordered collection of replacements, pE A,
and J a finite support of p which contains all essential domains and es-
sential ranges of elements of a. Then there exists a finite ordered collec-
tion ¢ of replacements which is J-normal and (p, J)-equivalent to c.

Moreover, if ¢=1{1, - - -, b}, the essential domains of ¢1, - * * , P
may be chosen arbitrarily from I —J, provided they are distinct, and the
essential domains of Gmi1, © -+, Gom are all elements of J.

Proor. The proof consists of successively transforming « into vari-
ous ordered collections, the last of which is ¢, with the property that
each is (p, J)-equivalent to the preceding one. The details are
omitted.

Lemma 8 states essentially that if two transformations agree on a
(finite) set P which supports an element ¢ of 4, except possibly on
a subset K of P of which ¢ is independent, then they produce the
same effect on gq.

LEMMA 8. Let a={a1, cee, a,,,} and a*={a1*, cee Ot;l} be
finite ordered collections of replacements on I, pE A, P a finite support
of p, and K any finite subset of I, such that oy - - - o j=0f" - - - a,’f,lj
whenever &P — K. Then S(a) 3(K)p =S(a*)3(K)p (c¢f. Definition 8).

Proor. Applying Lemma 7 to « and a* and a finite set J which
contains P and satisfies the hypotheses of Lemma 7 with respect to
o and a*, we obtain finite ordered collections 8 and B*. These in
turn can be transformed into collections v and * such that y=+*.
Since «, 8, v and a*, 8*, v* are seen to be (3(K)p, J)-equivalent, it
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follows that S(a)3(K)p=S(B8)3(K)p=S>)3(K)p=SH* 3(K)p
=S5(B*) 3(K)p=S(a*) 3(K)p.

CoOROLLARY 1. The definition of S(r) is unambiguous for every finite
transformation .

Proor. Let a= {al, IR a,,} and a*= {al*, BRI am} be finite
ordered collections of replacements such that e; « - - a,=7 on the
finite support Q of p, and ai* - - - o =7 on the finite support Q* of p.
Then P =QNQ*is a finite support of p,and a; * - * @n=7=0* - - - o}
on P. We apply Lemma 8 with K=, to obtain S(a)p =S(a*)p.

COROLLARY 2. If o, T are finite transformations on I which agree out-
side a finite set K, then S(o) 3(K) =S(r) 3(K).

Proor. Let p&EA. We find a finite ordered collection o«
={a;, - - -, @,} of replacements such that a4 - - - @, =0 on a finite
support P; of p, and a finite ordered collection = {Bl, cee, ﬁ,,.}
such that B8; - - - B,=7 on a finite support P; of p. Then oz - - - an
=01+ Bnon P—K, where P=P;MN\P,. It follows from Lemma 8
that S(o) 3(K)p = S(a) (K)p=S(B) (K)p =S(r) A(K)p.

LEMMA 9. Let 7 be a fintte transformation on I, J a finite subset of I.
If 1 is one-to-ome on 7=1J, then S(v)3(+—1J)=3(J)S(r).

PrOOF. If J=¢J, the lemma is trivial. Assume first that J= {j}.
Let pEA, and let a be a finite ordered collection of replacements,
a= {al, cee, a,,}, such that (1) @; - - - a,=7 on a support K; of p,
and (2) (a1 - - - an)~"Yj=7"1. (It is possible to find such a collection,
for example, by considering r| (I—=J).) Let K be a finite support of
p which includes all essential domains and essential ranges of ele-
ments of @, as well asjand k=17"Y%=(oq - - - @,)"Y. By Lemma 7, we
can find a finite ordered collection of replacements 8= {;61, S B2m}
which is K-normal and (3(j)p, K)-equivalent to a. The proof for
J= {]} then follows from Lemmas 4, 5, and 6 by consideration of
the cases j=Fk and j#k.

If J={j, - -+, ja}, n=1, and the lemma holds for all sets J; with
fewer than # elements, let 7 be one-to-one on 7—1J. Then 7 is one-to-
one on 774 and on 771J;, where Ji=J—{j}, and 3(J)S(r)
= 3(7)) 3(j)S() = 3()SO 3 () = S@) 3 Ur) = S(7)
a(r—u).

We are now in a position to prove the principal theorem.

THEOREM 2. Every locally finite cylindrical algebra of infinite degree
s equalizable.
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Proor. Let (4, I, C, d) be a locally finite cylindric algebra with I
infinite. We define e, S, and 3(5) for j&I as in Definition 6, and for
J finite, J={ji, - - -, ja}, we define I(J)=C(f1) - - + C(ja). It fol-
lows from our earlier remarks and Corollary 1 to Lemma 8 that the
definitions of 3(J) and S(r) are unambiguous and that 3(J) is a
quantifier for any finite subset J of I and any finite transformation
7 on I. An easy induction based on Lemma 3 shows that S(7) is a
Boolean endomorphism for any finite 7. We shall see that the postu-
lates for a quasi-polyadic algebra are satisfied by (4, I, S, 3), and it
will follow from the theorem on quasi-polyadic algebras quoted above
that (4, I, S, 3) determines a unique polyadic algebra.

Since S(j/j)p=p for all j&EI and pEA, it follows that S(8)p =2,
so that Q; holds. Postulates Qz, Qs, Q4, and Qy follow immediately from
the definitions, and Qs is Corollary 2 to Lemma 8, while Qg is Lemma
9. We must show that e is a binary predicate satisfying conditions
(1) and (2) of Definition 2. Since e=d, we know that e maps I X into
A, and e(z, 1) =1 for all 2&€1. To show that S(r)e(s, j) =e(re, 77), it
follows from the definition of S that it is sufficient to verify the
equation S(k/h)e(s, j) =e((k/h)i, (k/h)j) for all ¢, j, h, kEI. If
kGE{i, j} or if k=F, then the equation holds trivially, since e(z, j) is
supported by {7,7}. Suppose, then, that k=1, k>%k. Then S(k/h)e(i, 5)
=3()[dG, HAdG, B)]=3@)[d(, )AL, ))]=d(G, k) =dh, j)
=e((k/h)i, (k/h)j). The case k=3, k#h is similar. Now suppose pE& 4.
Then pAe(i, j) < 3() [pAdG, j)]=S3E/j)p whenever 5], and the
inequality holds trivially when 7=j.

THEOREM 3. Let A=(A4, I, S, 3, e) be a locally finite e-algebra of
infinite degree. Let = (A, I, C, d) be the locally finite cylindric algebra
of infinite degree arising from U by means of Definition S (¢f. Theorem
1). Let Uy be the e-algebra arising from B by means of Definition 6
(¢f. Theorem 2). Then A1=A.

ProoF. Let Ay=(4, I, 31, Sy, e1). It follows from definitions that
3,(k) = C(k) = 3(k) for all REI, and therefore that 3,(J)= 3(J) for
any finite J. Also, we have e;=d=e. If pEA4 and i, jEI, 1], then
S1G/f)p=CHE) [pAdG, ) ]=3@) [pAel, 7)]=S@E/7)p by the defini-
tion of S; and Lemma 1. An easy induction shows that Si(r) =S(7)
for any finite 7. The theorem follows from the uniqueness assertion
of the theorem on quasi-polyadic algebras.

THEOREM 4. Let B=(4, I, C, d) be a locally finite cylindric algebra
of infinite degree. Let A=(A, I, S, 3, e) be the e-algebra arising from B
by means of Definition 6 (cf. Theorem 2). Let B1=(A4, I, C, d1) be the
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cylindric algebra arising from A by means of Definition 5 (c¢f. Theorem
1). Then B=1:.

ProoF. From the definitions, we have dy=e=d, and Ci(k) = 3(k)
=C(k) for all k€.
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