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1. Suppose that/(x) is an infinitely differentiable positive definite

function. That is to say

(1) f(x) =   f   e*'*da(t),
•/-to

where da(t) is a bounded non-negative measure. Since/(x) is infinitely

differentiable, it is well known (cf. C.-G. Esseen [4, p. 24]) that

/BO

i"t"eitxda(t).
-00

Therefore, the sequence {(— i)n/(n)(0) }j° represents a Hamburger

moment sequence. Again, if j£*}o is an arbitrary finite set of complex

numbers and m is any non-negative integer, then

'LU-iWk+n)(x)\   =\f   lmeil* £ Ukda(t)
t=0 I " —oo fc-0

^   f   t2mda(t)  f    I £ £*,*   da(t)
J —oo v —oo I  A=0

= M„i:l:w.(-i)r+'/(r+"(o),
r=0 8—0

where Mm=(-i)2mf2m)(0).

It turns out that if we add to these two necessary conditions a

third condition, namely that {(— i)nfM(0)} is a determined Ham-

burger moment sequence,2 then these three conditions are sufficient

for an infinitely differentiable function to have the representation (1).

However, even more is true. If f(x) is defined and infinitely differenti-

able on some open interval containing the origin and satisfies the

above conditions, then it has the representation (1); i.e. it can be

extended to be a positive definite function. Since the Hamburger

moment sequence is determined the extension is clearly unique (cf.
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Esseen [4, pp. 24-25]). Moreover, we shall show that if the Ham-

burger sequence is not determined, the first two necessary conditions

are not sufficient. On the other hand the fact that the Hamburger

sequence {(— i)n/(n,(0)} is determined is in general not a necessary

condition.

The theorem we shall prove in this note is as follows:

Theorem. Let f(x) be an infinitely differentiable function defined on

the open interval (—a, b) where a, b>0. If

(a) {(— i)kfik) (0) }q is a determined Hamburger moment sequence and

(b) for every non-negative integer m there exists an Mm > 0 such that

for every xE(—a, b) and every finite set {£*}" of complex numbers

L U-i)*/(*+m)f»    ^ Mm 2Z E ZrU-i)r+'f(r+a}(0),

then there exists a bounded non-negative measure da(t) such that

f(x) =   f   ei,xda(t).
J -a

As a tool in the proof of this theorem we shall use the theory of

operators in Hilbert space. This theorem was inspired by a recent

result of A. P. Calderon and A. Devinatz [2; 3] when we noticed,

that after some preliminary work, the same methods as used in [2]

and [3 ] could be used to obtain our more general result.

2. In this section we shall construct the requisite tool which we

shall use in the proof of our theorem, namely a Hilbert space. To do

this we consider the class fJ' of functions of the form

g(x) = 2ZU-i)hfw(x).
t-o

If h(x) is another element of $', namely

m

Kx) = 2Zr,k(-i)kfkKx),
*=o

we shall construct an inner product in JF' by the formula

(2) (g, h) = 2Z2Z SM-i^'f^'KO).
r—0 »—0

To show that this is a well defined function, suppose that g and h have

different representations; i.e.
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*(*) = 2Zti(-i)hfw(x),      h(x) = £ Vk'(-i)kf^(x).
0 0

Then

n'    m' n*

£ E VM-W+'KO) = Z ?/(i)rA(r)(0)
r—0 a—0 r—0

n*     m m

= EZf/ii-*)^''^) = 2Zu-i)-gum
r=0 a—0 *—0

m      m

= ZI^,(-i)rt'/w"(o).
r—0 «=-0

This shows that the bilinear function in (2) is well defined. Moreover,

since {(— i)n/(n)(0)} is a moment sequence, (g, g)^0 and by condi-

tion (b) of the theorem if (g, g) =0, then g(x)=0. Conversely if g(x)

= 0> (g, n)=0. Therefore, the bilinear function defined in (2) is an

actual inner product on fj'.

In general, fJ' is not complete with respect to this norm. We shall

show that it can be completed to a Hilbert space JF of functions on

(—a, b). Suppose then that {gn}" is a. Cauchy sequence in fJ'. That

is to say \\gn—gm\\-^0 as n, m—><». By condition (b) of the theorem

|g„(5c)—gro(x)| goes uniformly to zero as n, ra—><». Therefore, there

exists a continuous function g(x) defined on (—a, b) such that

| gn(x) —g(x) | —>0 as n—>0. This extended class of functions, which we

get as pointwise limits of Cauchy sequences in fJ', we shall designate

by fr. It is clear that fJ is a linear space over the complex number field.

It remains to extend the inner product from fJ' to fJ so that fJ becomes

a Hilbert space. If g, hE'S, there exist Cauchy sequences {gn},

{hn} C^' sucn that gn(x)—*g(x) and hn(x)—>h(x). We shall define

(3) (g, h) = lim (gn, hn).
n—»»

That this limit exists is clear since

| (gni K) - (gm, hm) |   ̂  II*. - g.|| llA.ll + ||gm|| ||K - A,||.

The quantities ||ft„|| and ||gm|| are uniformly bounded and therefore

{(gn, hn)} is a Cauchy sequence. We must show yet that (3) is a well

defined function.

Suppose that {gn}, {^»}C^' are Cauchy sequences such that

gn(x)—*g(x) and Jin(x)—>h(x) uniformly in ( — a, b). Condition (b) of

the theorem tells us that for any m, gf(x)-*g{m)(x) and ^(x)

_>him)'xj uniformly in (—a, b) and therefore, in particular, |&m>(0)
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-»g<m>(0) and #,m)(0)-^(m)(0). Now, clearly

lim (gn, hn) = lim   lim (gn, hm) =  lim   lim (gn, hm).
n—*0 n—*<»   m—*oo m—,«    n—>«

Further,

lim  (g„, £m) —   lim  (gn, h~m)
n ,fra—* <* n .fn-* w

= lim  lim (g„ — g„, Am) + lim  lim (£„, Zrm — £„,).
m—**>   n—►« n—>«   m—•«

Suppose that

it

and

|n(x)   =   E^-OV'W.
fe

Then we have

lim   lim (g„ - g„, Am) = lim   lim  X, £*,*,(-t) [g„  (0) - g„  (0)] = 0
m—* oo   n—»« m-+«   n—»«      &

and similarly

lim   lim (£„, /?„, — ̂ m) = lim   lim   22 Vk.n(i) [hm (0) — h"m (0) ] = 0.
n—*»   m—»» n—»oo m—»«>      fc

This shows that the function defined in (3) is indeed well defined.

To show that this bilinear function is an inner product we first note

that for every g in 5 there exists a Cauchy sequence {g„} Q5' such

that

(g, g) = lim (g„, g„)  ^ 0.
n-*oo

Again, suppose that for gC5, (g, g) =0. Suppose {gn} C&' is a Cauchy

sequence such that g„(x)—>g(x) and (g, g) =lim (g„, g„) =0. Then since

\gn(x)\2=      Efo.«(-9V<M(*)       ̂ ^o||gn||2

we have that gn(x)—>0, which shows that g(x) =0. On the other hand

if g(x)=0 on ( — a, b) then gCS' and (g, g) =0. Therefore, JF forms a

linear space with an inner product. The proof of the fact that ff is

complete uses standard arguments and we leave this to the reader.

An important fact that we shall need in the future, a fact used
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previously in connection with the space 3f', is that for any gC$

(4) (-W>(0) = (g(x), (-i)"f^(x)).

This can be easily proved by taking a Cauchy sequence {gn(x)} C&'

such that gn(x)—>g(x), noting that (4) is true for every g„ in this se-

quence and then passing to the limit.

3. Now that we have constructed the Hilbert space SF we can pro-

ceed with the proof of our theorem. First we wish to set up a con-

jugation operator on 5\ Consider first an element gGJF'; i.e. g(x)

= ZS&(-*)*/<4)(*). Define

Jg(x) = J2U-i)«fw(x).
0

Now, J2g(x) =g(x) and if h(x) = Y% )?*(-*)*/<*>(*). then

n       m

(Jg, Jh) = 2Z2~l iM-i^'f^'KO) = (h, g).
r=0 »=0

Since SF' is dense in JF, / can be extended to all of SF and is a conjugation

operator.

Define an operator D, with domain SF', by the relation

Dg(x) = — idg(x)/dx.

In other words, if g(x) = £)S £*(-*)*/<*> (x), then

Dg(x) = JZU-i)k+lf{k+1)(x).
o

If h(x) = 2Zo n*(-i)kfik)(x), then

n      m

(Dg, A) = Z E ^.(-*)H-+1/(r+'+1)(0) = (g, Dh).
r—0 a=0

Therefore, D is a symmetric operator. Further, since it clearly per-

mutes with /, it has a self-adjoint extension. We shall show that the

self-adjoint extension is unique and is therefore the closure of D.

Suppose H is any self-adjoint extension of D, and dE(t) its canoni-

cal resolution of the identity. If/0(x) =/(x), then

(_i)»/<»>(0) = (£?-/,,/0) =   f   t"d(E(t)f0,fo).
J —a,

Since by hypothesis {( — i)nf(n)(0)} is a uniquely determined Ham-

burger moment sequence, the measure d(E(t)f0, /0) is uniquely deter-
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mined. Suppose we letfn(x) = (— i)nf-n)(x). The linear manifold gen-

erated by this class of elements is dense in fJ. Now,

(£(X)/.,/«) = (£(X)H-+«/o,/o)=   f   t»+<"d(E(l)f0,fo).
J -00

Therefore, for any n and m, (E(X)fn, fm) is uniquely determined in

the sense that if Hi is another self-adjoint extension of D, dEi(t) its

canonical spectral measure, then (£i(X)/„, /*>) = (-E(X)/„, /«,)• This

means however that D has only one self-adjoint extension, namely its

closure.

What we have just proved means that D*, the adjoint of D, is self-

adjoint and is the closure of D. Therefore g is in the domain of D*

if and only if there exists a sequence {gn} E^' such that g*—>g and

Dgn—>D*g in the strong topology of ff. This implies uniform pointwise

convergence and therefore,

D*g(x) = — idg(x)/dx.

Let us consider the group of unitary operators

Ux =   f   ei,xdE(t),

where dE(t) is the canonical spectral measure of D*. Let gE'S be such

that

Uxg = j \itxdE(t)g,

where c is a positive finite number. It is clear that any such element

belongs to the domain of D*. Let us expand eilx, as a function of t,

in its Taylor series about the origin. Since this Taylor series is uni-

formly convergent in any finite interval we have for every x

Uxg=2Z—,( i"lndE(t)g
o    n\J-e

oo      %n

= E — inD*"g,
o    n\

where the convergence is in the strong topology of SF. But since con-

vergence in the strong topology implies pointwise convergence we

have for every yE( — a, b)

TT  , ,     A gM(y)Uxg(y) = E -—~ xn.
o        n\
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Since this series has an infinite radius of convergence for every

yC(~a, b) it is well known (cf. R. P. Boas [l]) that g(y) is analytic.

Therefore if x+yC( — a, b)

(5) Uxg(y) = g(y + x).

Since the class of elements for which (5) holds is dense in JF, (5) must

hold for every element of SF. If again we set/0(x) =/(x) then by means

of the relationship (4) we get

f(x) = Uxf(0) = (Uxfo.fo) = f   e"*d(E(t)fo,f0).

This completes the proof of the theorem.

4. In this section we shall show that there exist functions/(x) such

that {(— i)nf-n)(0)} is an undetermined Hamburger moment sequence

and which satisfy condition (b) of our theorem but which are not

positive definite. This is essentially the same example as given in [3].

Let {fin}o be any undetermined Hamburger moment sequence.

Then there exist two different bounded non-negative measures dai(t)

and da2(t) such that

/00 /* °°tndai(t) =  I    tndat(t).
-00 •*   —00

Let

fi(x) =   f   eitxdai(t),
J -00

h(x) =   f   eitxda2(t).
J _oo

Further, let

(fi(x)    for    x ^ 0,
f(x) =   S

\f2(x)    for    x^ 0.

Then, (— i)nfin)(0) =/*„ and condition (b) of the theorem is clearly

satisfied. However, f(x) cannot be a positive definite function since a

positive definite function must satisfy the relation

f(x) =/(-x).

However, we would get in this case

/i(*)=/i(-*)=/*( "*)=/*(*)

which would mean dati = da2.
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ON A SERIES OF RAINVILLE INVOLVING
LEGENDRE POLYNOMIALS

B. R. BHONSLE

1. The object of this paper is to obtain some relations involving

Legendre polynomials with the help of a series given by E. D. Rain-

ville. The results are believed to be new.

2. We start with the series given by E. D. Rainville

/sina\n   " rsin (/3 — a)~\n~k
(2.1) P„(cosa) = (-)   £c..J-        Pk(cosP).

\sin PJ   k=0        L      sin a     J

Putting P = 2a and cos 2a = x, we get

(2.2) 2»'2(1 + x)^2Pn(C-~\  ) = Z Cn.kPk(x).

From (2.2) and the orthogonal property

j\l+   x)»l2Pr(x)Pn(^-^j     ^dx

=-> 0 ^ y ^ n,
(2.3) 2"'2-1(2t + 1)

= 0, r > n.

Using (2.3) with Adams' expansion (Modern analysis, p. 331) for
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