
THE GENERALITY OF LOCAL CLASS FIELD THEORY

(GENERALIZED LOCAL CLASS FIELD THEORY V)1

G. WHAPLES

1. The theorems of local class field theory are known to hold for all

fields which are complete under a discrete rank one valuation and

whose residue class fields (1) have no inseparable extension and (2)

have, in any algebraic closure, exactly one (necessarily cyclic) exten-

sion of degree n for every integer n>0. Since complete fields with

any given residue class field can be constructed by formal power series

or Witt vectors, we shall restrict ourselves to the set of fields satisfy-

ing (1) and (2), calling them quasi Galois fields (qGf).

O. F. G. Schilling [3 ] has constructed qGf of characteristic 0 by use

of formal power series. But the only qGf's of prime characteristic

mentioned up to now are the Galois fields and those infinite algebraic

extensions of them whose "degree" has no infinite part. It is easy to

see that these are the only absolutely algebraic qGf of prime char-

acteristic. If these should be the only qGf of prime characteristic it

would mean that generalized local class field theory was only a limit-

ing case of the classical theory so that the new methods used to prove

the existence theorem [5; 6 ] could be replaced by something much

simpler.

We prove here that this is not the case. For example, there exist

qGf whose absolutely algebraic subfield is the algebraic closure of the

Galois field of order p. In fact we prove a much more general result,

namely:

Theorem 1. Every absolutely algebraic field of characteristic p is the

absolutely algebraic subfield of some qGf of transcendence degree 1.

2. Let k be any field, kc an algebraic closure of k, and ® the group

of all automorphisms of kc/k. ® is a compact topological group. Let

the ring / be the Cartesian product over all primes I of the rings of

/-adic integers with the usual product topology. There is a natural,

continuous mapping (m, o)-*om of 7x® into ® and every element a

of ® has a "generalized period" in I, namely a generator of the ideal

of all mCI for which <rm = l. For all this see Artin [l, pp. 171-177].

If F is any field with &C-FC&C then P is a qGf if and only if the
Galois group of kc/F is the closure of a cyclic group generated by an
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element of ® whose generalized period is 0 so we see: k has an algebraic

extension which is a qGf if and only if ® contains an element of gener-

alized period 0. I do not know any convenient necessary and sufficient

condition that this should be so but the following sufficient condition

is enough to prove Theorem 1:

Lemma 1. If for every n the normal extension K/k contains at least

one subfield which is cyclic of degree n over k then K/k has an automor-

phism of generalized period 0.

Proof. We show first that for every prime I, the Galois group ®

of K/k contains elements whose generalized period is divisible by lx,

i.e. is divisible by ln for every n. Consider the set of all cyclic exten-

sions C/k of degree / with CEK.

Case 1. There exists a C which, for every n, can be embedded in

a C which is contained in K and is cyclic of degree /" over k. In this

case if o is any element of ® which induces a generating automor-

phism on C/k then the period of a on C is divisible by ln. Hence the

generalized period of a is divisible by l°°. Let Si be the set of all such

elements a: it is a closed subset of ®.

Case 2. For every cyclic C/k of degree I there is an n(C) such that

C cannot be embedded in a cyclic C/k of degree /" if n>n(C). Since

k has cyclic extensions of degree /" for every n, there must exist an

infinite family C,- of cyclic extensions of degree I such that n(Ci)

approaches infinity as i approaches infinity and no C< is contained in

the composite of G, C2, ■ ■ • , Cj_i. From this and the compactness of

© it follows that the set Si of all elements of ® which induce a gen-

erating automorphism on d/k for every * is nonempty. Again it is a

closed subset of ® and all its elements have generalized period divisi-

ble by l™.
Since in either case the elements of Si are defined by their effect on

an abelian extension of exponent I, the family {St}, where / runs

through all primes, has the finite intersection property. Any element

of the intersection of all Si has generalized period 0.

Remark. Lemma 1 is true not only for Galois groups but for any

topological group which is inverse limit of a system of finite groups:

one need only substitute cyclic groups of characters for cyclic fields

in the above proof.

Proof of Theorem 1. Let f be the Galois field of order p and kQ

any algebraic extension of f. Let k = f(t) where / is transcendental

and let T be the maximal everywhere unramified extension of k. Let

a be an automorphism of kc/k which induces a generating auto-

morphism of T/k and let K be the subfield of the maximal abelian
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extension of k left fixed by a. By class field theory it is easy to see

that the Galois group of K/k is isomorphic to u/f ■ where u is the group

of &-ideles which are everywhere units. It is easy to construct closed

subgroups h, with rC^CM> such that u/h is cyclic of any given order;

so by Lemma 1 there is an automorphism r of kc/k which induces on

K an automorphism of generalized period 0. (It is easy to verify that

Case 1 of Lemma 1 occurs when l = p and Case 2 occurs for all l^p.)

Choose t so that it is the identity on T; this is possible because

TC\K = k. Now T = fck and the Galois groups of T/k and fc/f are

isomorphic to P Hence there is an mCI such that the fixed point

field for crm in fc is exactly k0. Let F be the fixed point field for amr

in kc. The maximal absolutely algebraic subfield of F is ko, and F is a

qGf because crmr has generalized period 0 on K, hence also on k°.

I thank the referee, J. T. Tate, for suggestions which greatly

simplified the proof of Theorem 1.

From Lemma 1 it follows easily that the rational field has algebraic

extensions which are qGf. Also it is easy to prove that any field k is

contained in a qGf: adjoin to k all roots of unity of order prime to its

characteristic; then adjoin a transcendental element and apply multi-

plicative and additive Kummer theory.

3. Since Theorem 1 does not give an explicit construction for qGf,

the following is also of interest.

Theorem 2. Let k be an absolutely algebraic field of characteristic p.

Let Sa, San be the sets of primes I for which the degree of k/f is, or is

not, divisible by l°°, and assume that pCStm and that k contains primitive

Ith roots of unity for every ICSX. Let V be the additive group of all ra-

tional with denominator prime to the elements of Sx and F the formal

power series field S(k, T, 1) of all formal sums ^laaua({a} well

ordered, aaCk) as defined in [2, §4] or [4, p. 23]. Then F is a qGf and

k its maximal absolutely algebraic subfield. The fields k satisfying these

assumptions are the only ones which can be absolutely algebraic subfields

of qGf constructed in this way.

Proof. If l^p, ICSK, and k contains primitive Ith roots of unity

then it contains primitive lnth roots of unity for every n. Every

algebraic extension of F is gotten by adjoining absolutely algebraic

elements and mth roots of u where m is a product of powers of primes

in Sx. If the assumption pCSnn were dropped, then S(k, T, 1)

would have inseparable extensions; if the assumption about roots of

unity were dropped, it would have nonabelian extensions.

Theorem 2 is an analogue for characteristic p of one of Schilling's
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constructions in  [3]. I am grateful to I. Kaplansky and O. F. G.

Schilling for discussion and correspondence concerning Theorem 2.
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A NOTE ON COMPLETELY PRIMARY RINGS

S. J. BRYANT AND J. L. ZEMMER

A completely primary ring will mean a commutative ring with

identity in which the ideal of nilpotent elements, called the radical,

is a maximal ideal. For a completely primary ring A with radical N,

A will mean the quotient ring A/N. It has been shown by E. Snapper1

that if A is a completely primary ring of characteristic zero then A

contains a field F isomorphic with A. The purpose of this note is to

extend and, incidentally, give another proof of Snapper's result.

Theorem. If A is a completely primary ring of characteristic zero

and N its radical, then A contains a field F isomorphic with A =A/N

such that each a in A can be uniquely written in the form a =f+n, where

fEF, nEN.

Proof. First note that xEN implies that x has an inverse, xr1. By

Zorn's lemma A contains a maximal ring F whose intersection with

N is 0. This ring F is a field, for otherwise the set F* of all elements

of the form ab~x, O^b, aEF, is a field containing F, whose intersec-

tion with N \s0,a contradiction. To prove the theorem it is sufficient

to show that A is identical with the subset A * of A consisting of all

Received by the editors April 10, 1956.
1 E. Snapper, Completely primary rings, III Imbedding and isomorphism theorems,
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