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1. For any lattice point a=(ai, • • • , ak) in the ^-dimensional

euclidean space Rk, let ||a|| =max„i,...,i |a«|. If A is an infinite set

of such lattice points, we define for x>0 the counting function A(x)

to be the number of elements aCA satisfying ||a|| iix. Then various

densities for such sets A can be introduced as generalizations of the

well-known densities of sets of non-negative integers. In particular,

we shall denote the lower limit, the upper limit, and, in the case of

its existence, the limit, of the sequence A(x)/(2x)k, as x tends to

infinity, by d*(A), d*(A), and d(A), respectively. Furthermore, if A is

restricted to have elements with non-negative coordinates only, we

shall consider the corresponding expressions of the sequence A(x)/xk

and denote them by D*(A), D*(A), and D(A). According to the ter-

minology in the case k = l, we shall call these limits the lower and

upper asymptotic densities and the natural density1 of A, respec-

tively.

The sum set A +B of two sets A and B in Rk is, as usual, defined

to be the set of all points u + b, aCA, b£P, obtained by vector addi-

tion.

By an interval IC.Rh we mean the cartesian product of any k open

intervals of P1. The unit cube, i.e. the set of all points f = (xi, ■ ■ ■ ,xk)

with Ogx,<l (k=1, • • • , k), is denoted by Ch.

For any real number x, let [x] denote the greatest integer ^x and

let {x} be the fractional part x—[x]. Then, for every point

r = (xi, • • ■ , Xi), let {%} =({xi}, • • • , {xi}), and for every set

MQRk, let {M} be the set of all points {%) with $CM.

The Jordan content of a set M^Rk is denoted by pk(M).

A sequence %i, r2, • • • is called uniformly distributed (mod 1) if

it has the following property: Let, for any interval I^Ck, Ni be the

set of indices i such that {?,}£/. Then A7/ has a natural density

D(Ni)=pk(I).

2. In the case J=l an analogue of Mann's Theorem has been

proved for lower asymptotic densities by M. Kneser [3]. In the ab-

sence of a similar theorem for k > 1 the present paper aims at estab-

lishing the inequality of the (a+)3)-theorem for a certain class of sets
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1 See, for instance, B. Volkmann [6].
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of lattice points defined by means of uniformly distributed sequences.

Let Xi, • • • , X* be fixed positive irrational numbers and let, for

any lattice point a—(ai, ■ ■ ■ , ak), p(a) = (XiCi, • • • , ~kkak). Further-

more, if M is an open subset of Ck, let Am be the set of lattice points

a such that {p(u)} EM. If then AM denotes the set of those elements

of AM which have non-negative coordinates only, the following theo-

rem holds:

Theorem 1. For any two open sets M1C.C and M2<^Ck, the following

densities exist and satisfy the inequalities:

(1) D(A[m^m,\) ^ min (1, D(AMl) + D(A+M,))

and

(2) d(A{Ml+Ml)) s^ min (1, d(AMl) + d(AM,)).

For the proof the following lemmas are needed:

Lemma 1. Under the conditions of the theorem,

(3) A\M1+Mi\ 3 A Mi + Am,-

Proof. Let a be an element of AMl+AMt. Then there are lattice

points cti and a2 with non-negative coordinates such that a = ai+a2,

{\)(cii)}EMi, {p(a2)}E M2. Hence {ti(ai + a2)} E {Mi + M2} and con-

sequently, aEA{Ml+M2\.

Lemma 2. Under the conditions of the theorem,

(4) A{Ml+Mt) = AMl + AMl-

Proof. As in Lemma 1, the relation

(5) A{m1+m,)'Q.Am1 + AM,

is   obtained   immediately.   To   prove   the   opposite   inclusion,   let

aEAlMl+M,}. Then {p(a)} E {Mx+M2}, i.e.

(6) {p(a)} = mi + m2 (mod 1),   mi E Mu m2 E M2.

Since the sets J7i and M2 are open there exists an e>0 such that the

interval

(mn — e, ma + e) X (mi2 — e, mi2 + e) X • • • X (mik — e, mik + e)

a = i, 2)

is contained in Mi if m, = (mn, • • • , ma). By a theorem due to Her-

mann Weyl [7] each of the k sequences X«o (a = 0, 1, 2, • • • ) is uni-
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formly distributed and therefore the sequences {\Ka} are everywhere

dense in the interval C1. Thus there exists a lattice point

Gi = (an, ■ ■ ■ , au) such that

(7) mu — e < {\<au} <mu + e (k = 1, • • •    k)

and consequently, <XiCAmv Letting ct2 = a — ai one obtains

{p(a)| - {p(o,)} - {p(a2)}  (modi)

and hence, if u2 = (a2i, ■ • • , a2k), (7) and (6) imply

{K"2)} C (mn — e, m2l + t) X • • • X (m2k — e, m2k + t),

therefore a2CAut and aCAu^AM,- In view of (5), this establishes

the lemma.

Lemma 3. If the set of all lattice points in Rk is ordered as a sequence

ui, ct2, • • • in such a way that \\am\\ <||tt„|| implies m<n, then the se-

quence p(di), p(u2), ■ • •  is uniformly distributed.

Proof. From Weyl's theorem referred to above, it follows that

each of the k sequences X„a (a = 0, ±1, +2, • • • ) is uniformly dis-

tributed in the sense that, for any interval IK^Cl, the set AiK has

the density d(AiK) =pi(IK). By definition, the first (2x + l)* terms of

the sequence ui, ct2, ■ ■ ■ are exactly all the lattice points a with

||u|| gx. Therefore, if I = PX/2X • • • X/* is an interval in Ck, then

the counting function of the set Ai is

Ai(x) = An(x)AIt(x) ■ ■ ■ Ark(x),

and thus the k asymptotic equations

Au(x) =* 2*-tt1(/,) (k= 1, •••, k)

imply

Ai(x) « (2x)k II «i(/«) = (2x)kpk(I)
«=i

and therefore d(A/) —pk(I).

Since obviously D(AfK) =d(AiK), one also obtains

D(A+t) = ,xk(I).

Lemma 4. For any open set MQCk there exist the densities

d(AM) = D(A+M) = pk(M).

Proof. Let e>0, then there are sets Rt and R' which are finite
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unions of intervals, such that RtCMQRe and nk(R')—nk(Rt)<e.

Then Lemma 3 implies that

/**(*.) ^ d*(AM) ^ d*(AM) ^ fik(R')

and  therefore,  since  e is  arbitrary,  d(A m) = lxk(M).  The  equation

D(AU) =ixk(M) is obtained analogously.

Lemma 5. For any two open sets MiQC, M2QCk,

(8) ixk({Mi + M2}) ^ min (1, y,h(Mi) + W(M,)).

Proof. If all boundary points of Ck which the set {Mi + M2} may

contain are removed from it, the remaining set is obviously open.

Therefore { J7i + il72} has a content and (8) follows directly from

A. M. Macbeath [5, Theorem l].

Now Theorem 1 follows from Lemma 4, applied to the three sets

Mi, M2, and {Mi + M2} and Lemma 5.

Corollary. If Mi, ■ ■ ■ , M„ are open subsets of C\ then

(9) A[M,+ ---+Mn} = AMl + ■ ■ ■ + AM„

and

(10) d(A{Ml+-■■+!*„)) ^ min M, E d(AMjY

Proof. Follows from the theorem by induction.

3. In the case k = l, Theorem 1 can be proved directly from

Kneser's Theorem mentioned above, and consequently, the special

case for linear, open sets of Macbeath's Theorem follows then as a

corollary.

To establish this, we use the concept of a rational set of non-nega-

tive integers,2 i.e. a set whose characteristic function with respect to

the set of all non-negative integers is ultimately periodic. In this sense

the set AMi+Am2 is not rational whenever its lower asymptotic

density is different from 1, for otherwise there would be some residue

class P such that the intersection P+C\(Am1+Am^ is empty or finite.

If then Pi and P2 are any two residue classes such that Pt +P2 —P+,

it follows that at least one of the intersections AmJ^Pi and A mJ~^P2 ,

say, the first one, is empty or finite; otherwise Amx+Au^ would con-

tain infinitely many elements of P+. But the sequence {Xi a} with

aEPf is itself uniformly distributed3 and must therefore, because of

!Cf. [l]and [6].

8 Cf. [7].
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pi(Mi)>0, have infinitely many elements in Mi. This contradicts

the assumption that AUl+AMi is rational.

Kneser's Theorem implies that for any two sets A and B of non-

negative integers whose sum set A+B is not rational,

D*(A + B) £ min (1, D*(A) + D*(B)).

This proves (1) from which (2) can easily be obtained by decompos-

ing the sets Amx and Am, into the subsets of their non-negative and of

their negative elements.

4. The question may be raised what values the density

d(Ai+ • ■ • + A„)canassumeii d(Ai), • ■ ■ , d(A„) are prescribed. As

an answer to this question we prove the following

Theorem 2.4 Ifcti, • • • , a„, and y are positive real numbers satisfy-

ing 22"=i ottiZy^l, then there are sets Ai, ■ ■ ■ , A„ of lattice points in

Rk such that

d(Ai) = at (i = 1, • • • , «) and d(Ax + • • • + An) = y.

Proof. In view of Lemmas 2 and 4 it suffices to show that there

are open subsets Mi, • • • , Mn of Ck such that

(11)    pk(Mi) = ai (i = 1, • • • , n) and pk({Mx + • • • + Mn}) = y,

since the conditions of the theorem are then satisfied by the sets

Ai  =  AMi, Ai+   ■  •   •   + An  =  AiMi+.-.+Mj.

Furthermore, we may restrict the proof to the case k = 1; for, if

Mi, • • • , Mn are subsets of C1 satisfying (11), then the cartesian

products IfiXC*-1, • • • , MnXC*1'1 together with the set

{(Mi X C*-1) + •■■ + (MnX C*-1)} = {Mi+ ■■■ + Mn} X Ck~\

C*-1 being the interior of C*_1, will satisfy (11) in the ^-dimensional

sense.

Such sets Mi can, for example, be constructed as follows: It may be

assumed without loss of generality that ai 2:a25; • • • ^a,. Then, for

i = 1, • • •, n — 1, let Mi be the open interval (0, a() and let a = YjlZl «j.

For the definition of M„ the following two cases are distinguished:

(a) If y/a is an integer q (hence g^2 since y— <r^an>0), let

Mn =  U (ja, ja + —\ W ((q - l)o - —, (q - l)<rj.

'In the case of lower asymptotic densities of sets of integers a similar existence

theorem was proved, by a different method, by L. P. Cheo [2] who used an idea of

B. Lepson [4].
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These q intervals are nonoverlapping as the distance of the "last"

two is a — 2a„/q = a(l— 2an/y)>0 (for 7^ E"=i «t^2a„), and other-

wise the distance of any two adjacent intervals is a —an/q>0. There-

fore, ni(Mn)=an and, as is readily seen, i!7i+ • • • +Mn-i=(0, a),

consequently

{ J17, +   • • •   + Mn}   =  Mi +   ■ ■  •  +   Mn   =   U   (jo; (j +  l)ff + —)
y-o \ q /

U ((q - IV - — >  qd\ = (0, qa) = (0, y).

(b) If y/a is not an integer, a number e>0 is to be chosen such

that

«<min(—~, —(y- [y/o-]<j))
\lT/o-J     2 /

and Mn is defined as

(lyle-l] \

U      (jc,jo- + i)\\J(y-o--e,y-o-).

Then as in case (a) the intervals of Mn are nonoverlapping as the

"first" two of them obviously have a positive distance, the "last"

two of them have the distance

(7 - <r - e) - fl~—1 - «r + e) - y - T—1 c - 2e > 0

and otherwise the distance between any two neighboring intervals is

«n            /        an\
<r-e> c-T-—> <r(l-) > 0.

LtAJ        \       7/

Thus

Ui(Mn) - a, - el"—"! + «■[— - ll + 6 = an

and

{Ml + • • • + Mn} = (0, o-) + Mn= (0, 7).

Added in proof (January 11, 1957). The inequalities of Theorem 1

may be expressed as
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(1*) D(A+Ml + Am2) ^ min (1,D(A+Ml) + D(A+M,)),

(2*) d(AMl + AM,) ^ min (1, d(AMl) + d(AM,))

in view of Lemma 2 and the following

Lemma 6. D(A^Ml+Mt)) = D(AMl+A^).

Proof. Consider a covering of the set Mi by a finite number of

cubes d with uk(Ci) = e, and let 5 be the set of points m in {Mi + M2}

which have representations

m = mi + m2 (mod 1), m,- E Mt,

for at least all the points mi in one of the C/s. Then the remaining

set R(e)= {Mi + M2} —S satisfies lime^0 jui(i?(e)) =0. Due to uniform

distribution, there is an N(e) such that each d contains a point

g(cti), aiEAMl, with ||ai|| ^iV(e). Thus, if a = (ai, • • • , ak)EA% and

aK^N(e) for k = 1, ■ ■ ■ , k, then there is such a point ui for which

(8(a) — 8(tti)} EM2 and, since all coordinates of a — cti are non-nega-

tive, a — aiEAM2. Therefore, AsQAMi+Am2, hence

D(A+S) = D(AtMl+M,}) - Hk(R(e)) C D(AMl + Am,).

This proves the contention by virtue of Lemma 1.

Theorem 2 is also true for natural densities D(A) of sets of lattice

points with non-negative coordinates; in the proof reference has to

be made to Lemma 6 instead of to Lemma 2.
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