ON UNIFORM DISTRIBUTION AND THE DENSITY OF SUM SETS

BODO VOLKMANN

1. For any lattice point $\mathfrak{a}=(a_1,\cdots,a_k)$ in the k-dimensional euclidean space R^k , let $\|\mathfrak{a}\|=\max_{\kappa=1,\dots,k}|a_\kappa|$. If A is an infinite set of such lattice points, we define for x>0 the counting function A(x) to be the number of elements $\mathfrak{a}\in A$ satisfying $\|\mathfrak{a}\|\leq x$. Then various densities for such sets A can be introduced as generalizations of the well-known densities of sets of non-negative integers. In particular, we shall denote the lower limit, the upper limit, and, in the case of its existence, the limit, of the sequence $A(x)/(2x)^k$, as x tends to infinity, by $d_*(A)$, $d^*(A)$, and d(A), respectively. Furthermore, if A is restricted to have elements with non-negative coordinates only, we shall consider the corresponding expressions of the sequence $A(x)/x^k$ and denote them by $D_*(A)$, $D^*(A)$, and D(A). According to the terminology in the case k=1, we shall call these limits the lower and upper asymptotic densities and the natural density of A, respectively.

The sum set A+B of two sets A and B in R^k is, as usual, defined to be the set of all points $\mathfrak{a}+\mathfrak{b}$, $\mathfrak{a}\in A$, $\mathfrak{b}\in B$, obtained by vector addition

By an interval $I \subseteq R^k$ we mean the cartesian product of any k open intervals of R^1 . The unit cube, i.e. the set of all points $\mathfrak{x} = (x_1, \dots, x_k)$ with $0 \le x_{\kappa} < 1$ $(\kappa = 1, \dots, k)$, is denoted by C^k .

For any real number x, let [x] denote the greatest integer $\leq x$ and let $\{x\}$ be the fractional part x-[x]. Then, for every point $\mathfrak{x}=(x_1,\cdots,x_k)$, let $\{\mathfrak{x}\}=(\{x_1\},\cdots,\{x_k\})$, and for every set $M\subseteq \mathbb{R}^k$, let $\{M\}$ be the set of all points $\{\mathfrak{x}\}$ with $\mathfrak{x}\in M$.

The Jordan content of a set $M \subseteq \mathbb{R}^k$ is denoted by $\mu_k(M)$.

A sequence $\mathfrak{x}_1, \mathfrak{x}_2, \cdots$ is called uniformly distributed (mod 1) if it has the following property: Let, for any interval $I \subseteq C^k$, N_I be the set of indices i such that $\{\mathfrak{x}_i\} \in I$. Then N_I has a natural density $D(N_I) = \mu_k(I)$.

2. In the case k=1 an analogue of Mann's Theorem has been proved for lower asymptotic densities by M. Kneser [3]. In the absence of a similar theorem for k>1 the present paper aims at establishing the inequality of the $(\alpha+\beta)$ -theorem for a certain class of sets

Received by the editors March 12, 1956.

¹ See, for instance, B. Volkmann [6].

of lattice points defined by means of uniformly distributed sequences. Let $\lambda_1, \dots, \lambda_k$ be fixed positive irrational numbers and let, for any lattice point $\mathfrak{a} = (a_1, \dots, a_k)$, $\mathfrak{p}(\mathfrak{a}) = (\lambda_1 a_1, \dots, \lambda_k a_k)$. Furthermore, if M is an open subset of C^k , let A_M be the set of lattice points \mathfrak{a} such that $\{\mathfrak{p}(\mathfrak{a})\} \subseteq M$. If then A_M^+ denotes the set of those elements of A_M which have non-negative coordinates only, the following theorem holds:

THEOREM 1. For any two open sets $M_1 \subseteq C^k$ and $M_2 \subseteq C^k$, the following densities exist and satisfy the inequalities:

(1)
$$D(A_{\{M_1+M_2\}}^+) \ge \min (1, D(A_{M_1}^+) + D(A_{M_2}^+))$$

and

(2)
$$d(A_{\{M_1+M_2\}}) \ge \min (1, d(A_{M_1}) + d(A_{M_2})).$$

For the proof the following lemmas are needed:

LEMMA 1. Under the conditions of the theorem,

(3)
$$A_{\{M_1+M_2\}}^+ \supseteq A_{M_1}^+ + A_{M_2}^+.$$

PROOF. Let \mathfrak{a} be an element of $A_{M_1}^+ + A_{M_2}^+$. Then there are lattice points \mathfrak{a}_1 and \mathfrak{a}_2 with non-negative coordinates such that $\mathfrak{a} = \mathfrak{a}_1 + \mathfrak{a}_2$, $\{\mathfrak{p}(\mathfrak{a}_1)\} \in M_1$, $\{\mathfrak{p}(\mathfrak{a}_2)\} \in M_2$. Hence $\{\mathfrak{p}(\mathfrak{a}_1 + \mathfrak{a}_2)\} \in \{M_1 + M_2\}$ and consequently, $\mathfrak{a} \in A_{\{M_1 + M_2\}}$.

LEMMA 2. Under the conditions of the theorem,

$$A_{\{M_1+M_2\}} = A_{M_1} + A_{M_2}.$$

Proof. As in Lemma 1, the relation

$$(5) A_{\{M_1+M_2\}} \supseteq A_{M_1} + A_{M_2}$$

is obtained immediately. To prove the opposite inclusion, let $a \in A_{\{M_1+M_2\}}$. Then $\{\mathfrak{p}(a)\} \in \{M_1+M_2\}$, i.e.

(6)
$$\{\mathfrak{p}(\mathfrak{a})\}\equiv\mathfrak{m}_1+\mathfrak{m}_2\pmod{1}, \ \mathfrak{m}_1\in M_1, \mathfrak{m}_2\in M_2.$$

Since the sets M_1 and M_2 are open there exists an $\epsilon > 0$ such that the interval

$$(m_{i1} - \epsilon, m_{i1} + \epsilon) \times (m_{i2} - \epsilon, m_{i2} + \epsilon) \times \cdots \times (m_{ik} - \epsilon, m_{ik} + \epsilon)$$

$$(i = 1, 2)$$

is contained in M_i if $\mathfrak{m}_i = (m_{i1}, \dots, m_{ik})$. By a theorem due to Hermann Weyl [7] each of the k sequences $\lambda_k a$ $(a=0, 1, 2, \dots)$ is uni-

formly distributed and therefore the sequences $\{\lambda_k a\}$ are everywhere dense in the interval C^1 . Thus there exists a lattice point $\mathfrak{a}_1 = (a_{11}, \dots, a_{1k})$ such that

(7)
$$m_{1\kappa} - \epsilon < \{\lambda_{\kappa} a_{1\kappa}\} < m_{1\kappa} + \epsilon \qquad (\kappa = 1, \cdots k)$$

and consequently, $a_1 \in A_{M_1}$. Letting $a_2 = a - a_1$ one obtains

$$\{\mathfrak{p}(\mathfrak{a})\} - \{\mathfrak{p}(\mathfrak{a}_1)\} \equiv \{\mathfrak{p}(\mathfrak{a}_2)\} \pmod{1}$$

and hence, if $a_2 = (a_{21}, \dots, a_{2k})$, (7) and (6) imply

$$\{\mathfrak{p}(\mathfrak{a}_2)\} \subset (m_{21} - \epsilon, m_{2l} + \epsilon) \times \cdots \times (m_{2k} - \epsilon, m_{2k} + \epsilon),$$

therefore $a_2 \in A_{M_2}$ and $a \in A_{M_1} + A_{M_2}$. In view of (5), this establishes the lemma.

LEMMA 3. If the set of all lattice points in \mathbb{R}^k is ordered as a sequence $\mathfrak{a}_1, \mathfrak{a}_2, \cdots$ in such a way that $\|\mathfrak{a}_m\| < \|\mathfrak{a}_n\|$ implies m < n, then the sequence $\mathfrak{p}(\mathfrak{a}_1), \mathfrak{p}(\mathfrak{a}_2), \cdots$ is uniformly distributed.

PROOF. From Weyl's theorem referred to above, it follows that each of the k sequences $\lambda_{\epsilon}a$ $(a=0,\pm 1,\pm 2,\cdots)$ is uniformly distributed in the sense that, for any interval $I_{\kappa} \subseteq C^1$, the set $A_{I_{\kappa}}$ has the density $d(A_{I_{\kappa}}) = \mu_1(I_{\kappa})$. By definition, the first $(2x+1)^k$ terms of the sequence \mathfrak{a}_1 , \mathfrak{a}_2 , \cdots are exactly all the lattice points \mathfrak{a} with $\|\mathfrak{a}\| \leq x$. Therefore, if $I = I_1 \times I_2 \times \cdots \times I_k$ is an interval in C^k , then the counting function of the set A_I is

$$A_{I}(x) = A_{I_1}(x)A_{I_2}(x) \cdot \cdot \cdot A_{I_k}(x),$$

and thus the k asymptotic equations

$$A_{I\kappa}(x) \simeq 2x \cdot \mu_1(I_{\kappa}) \qquad (\kappa = 1, \dots, k)$$

imply

$$A_I(x) \simeq (2x)^k \prod_{\kappa=1}^k \mu_1(I_{\kappa}) = (2x)^k \mu_k(I)$$

and therefore $d(A_I) = \mu_k(I)$.

Since obviously $D(A_{I_r}^+) = d(A_{I_r})$, one also obtains

$$D(A_I^+) = \mu_k(I).$$

LEMMA 4. For any open set $M \subseteq C^k$ there exist the densities

$$d(A_M) = D(A_M^+) = \mu_k(M).$$

PROOF. Let $\epsilon > 0$, then there are sets R_{ϵ} and R^{ϵ} which are finite

unions of intervals, such that $R_{\epsilon} \subseteq M \subseteq R^{\epsilon}$ and $\mu_k(R^{\epsilon}) - \mu_k(R_{\epsilon}) < \epsilon$. Then Lemma 3 implies that

$$\mu_k(R_{\epsilon}) \leq d_*(A_M) \leq d^*(A_M) \leq \mu_k(R^{\epsilon})$$

and therefore, since ϵ is arbitrary, $d(A_M) = \mu_k(M)$. The equation $D(A_M^+) = \mu_k(M)$ is obtained analogously.

LEMMA 5. For any two open sets $M_1 \subseteq C^k$, $M_2 \subseteq C^k$,

(8)
$$\mu_k(\{M_1+M_2\}) \ge \min (1, \mu_k(M_1) + \mu_k(M_2)).$$

PROOF. If all boundary points of C^k which the set $\{M_1+M_2\}$ may contain are removed from it, the remaining set is obviously open. Therefore $\{M_1+M_2\}$ has a content and (8) follows directly from A. M. Macbeath [5, Theorem 1].

Now Theorem 1 follows from Lemma 4, applied to the three sets M_1 , M_2 , and $\{M_1+M_2\}$ and Lemma 5.

COROLLARY. If M_1, \dots, M_n are open subsets of C^1 , then

(9)
$$A_{\{M_{2}+\cdots+M_{n}\}} = A_{M_{1}} + \cdots + A_{M_{n}}$$

and

(10)
$$d(A_{\{M_1+\cdots+M_n\}}) \ge \min\left(1, \sum_{i=1}^n d(A_{M_i})\right).$$

Proof. Follows from the theorem by induction.

3. In the case k=1, Theorem 1 can be proved directly from Kneser's Theorem mentioned above, and consequently, the special case for linear, open sets of Macbeath's Theorem follows then as a corollary.

To establish this, we use the concept of a rational set of non-negative integers, i.e. a set whose characteristic function with respect to the set of all non-negative integers is ultimately periodic. In this sense the set $A_{M_1}^+ + A_{M_2}^+$ is not rational whenever its lower asymptotic density is different from 1, for otherwise there would be some residue class P such that the intersection $P^+ \cap (A_{M_1}^+ + A_{M_2}^+)$ is empty or finite. If then P_1 and P_2 are any two residue classes such that $P_1^+ + P_2^+ = P^+$, it follows that at least one of the intersections $A_{M_1}^+ \cap P_1^+$ and $A_{M_2}^+ \cap P_2^+$, say, the first one, is empty or finite; otherwise $A_{M_1}^+ + A_{M_2}^+$ would contain infinitely many elements of P^+ . But the sequence $\{\lambda_1 \ a\}$ with $a \in P_1^+$ is itself uniformly distributed and must therefore, because of

² Cf. [1] and [6].

⁸ Cf. [7].

 $\mu_1(M_1) > 0$, have infinitely many elements in M_1 . This contradicts the assumption that $A_{M_1}^+ + A_{M_2}^+$ is rational.

Kneser's Theorem implies that for any two sets A and B of non-negative integers whose sum set A+B is not rational,

$$D_*(A + B) \ge \min (1, D_*(A) + D_*(B)).$$

This proves (1) from which (2) can easily be obtained by decomposing the sets A_{M_1} and A_{M_2} into the subsets of their non-negative and of their negative elements.

4. The question may be raised what values the density $d(A_1 + \cdots + A_n)$ can assume if $d(A_1)$, \cdots , $d(A_n)$ are prescribed. As an answer to this question we prove the following

THEOREM 2.4 If $\alpha_1, \dots, \alpha_n$, and γ are positive real numbers satisfying $\sum_{i=1}^n \alpha_i \leq \gamma \leq 1$, then there are sets A_1, \dots, A_n of lattice points in \mathbb{R}^k such that

$$d(A_i) = \alpha_i \ (i = 1, \dots, n) \ and \ d(A_1 + \dots + A_n) = \gamma.$$

PROOF. In view of Lemmas 2 and 4 it suffices to show that there are open subsets M_1, \dots, M_n of C^k such that

(11)
$$\mu_k(M_i) = \alpha_i \ (i = 1, \dots, n) \text{ and } \mu_k(\{M_1 + \dots + M_n\}) = \gamma$$
,

since the conditions of the theorem are then satisfied by the sets

$$A_i = A_{M_i}, \quad A_1 + \cdots + A_n = A_{\{M_1 + \cdots + M_n\}}.$$

Furthermore, we may restrict the proof to the case k=1; for, if M_1, \dots, M_n are subsets of C^1 satisfying (11), then the cartesian products $M_1 \times \overline{C}^{k-1}, \dots, M_n \times \overline{C}^{k-1}$ together with the set

$$\{(M_1 \times \overline{C}^{k-1}) + \cdots + (M_n \times \overline{C}^{k-1})\} = \{M_1 + \cdots + M_n\} \times \overline{C}^{k-1},$$

 \overline{C}^{k-1} being the interior of C^{k-1} , will satisfy (11) in the k-dimensional sense.

Such sets M_i can, for example, be constructed as follows: It may be assumed without loss of generality that $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n$. Then, for $i = 1, \cdots, n-1$, let M_i be the open interval $(0, \alpha_i)$ and let $\sigma = \sum_{i=1}^{n-1} \alpha_i$. For the definition of M_n the following two cases are distinguished:

(a) If γ/σ is an integer q (hence $q \ge 2$ since $\gamma - \sigma \ge \alpha_n > 0$), let

$$M_n = \bigcup_{j=0}^{q-2} \left(j\sigma, j\sigma + \frac{\alpha_n}{q} \right) \cup \left((q-1)\sigma - \frac{\alpha_n}{q}, (q-1)\sigma \right).$$

⁴ In the case of lower asymptotic densities of sets of integers a similar existence theorem was proved, by a different method, by L. P. Cheo [2] who used an idea of B. Lepson [4].

These q intervals are nonoverlapping as the distance of the "last" two is $\sigma - 2\alpha_n/q = \sigma(1 - 2\alpha_n/\gamma) > 0$ (for $\gamma \ge \sum_{i=1}^n \alpha_i \ge 2\alpha_n$), and otherwise the distance of any two adjacent intervals is $\sigma - \alpha_n/q > 0$. Therefore, $\mu_1(M_n) = \alpha_n$ and, as is readily seen, $M_1 + \cdots + M_{n-1} = (0, \sigma)$, consequently

$$\{M_1 + \cdots + M_n\} = M_1 + \cdots + M_n = \bigcup_{j=0}^{q-2} \left(j\sigma, (j+1)\sigma + \frac{\alpha_n}{q}\right)$$

$$\cup \left((q-1)\sigma - \frac{\alpha_n}{q}, q\sigma\right) = (0, q\sigma) = (0, \gamma).$$

(b) If γ/σ is not an integer, a number $\epsilon>0$ is to be chosen such that

$$\epsilon < \min\left(\frac{\alpha_n}{|\gamma/\sigma|}, \frac{1}{2}(\gamma - [\gamma/\sigma]\sigma)\right)$$

and M_n is defined as

$$M_n = (0, \alpha_n - \epsilon [\gamma/\sigma]) \cup \left(\bigcup_{j=1}^{[\gamma/\sigma-1]} (j\sigma, j\sigma + \epsilon)\right) \cup (\gamma - \sigma - \epsilon, \gamma - \sigma).$$

Then as in case (a) the intervals of M_n are nonoverlapping as the "first" two of them obviously have a positive distance, the "last" two of them have the distance

$$(\gamma - \sigma - \epsilon) - \left(\left\lceil \frac{\gamma}{\sigma} \right\rceil - \sigma + \epsilon \right) = \gamma - \left\lceil \frac{\gamma}{\sigma} \right\rceil \sigma - 2\epsilon > 0$$

and otherwise the distance between any two neighboring intervals is

$$\sigma - \epsilon > \sigma - \frac{\alpha_n}{[\gamma/\sigma]} > \sigma \left(1 - \frac{\alpha_n}{\gamma}\right) > 0.$$

Thus

$$\mu_1(M_n) = \alpha_n - \epsilon \left[\frac{\gamma}{\sigma}\right] + \epsilon \cdot \left[\frac{\gamma}{\sigma} - 1\right] + \epsilon = \alpha_n$$

and

$${M_1 + \cdots + M_n} = (0, \sigma) + M_n = (0, \gamma).$$

Added in proof (January 11, 1957). The inequalities of Theorem 1 may be expressed as

(1*)
$$D(A_{M_1}^+ + A_{M_2}^+) \ge \min (1, D(A_{M_1}^+) + D(A_{M_2}^+)),$$

$$(2^*) d(A_{M_1} + A_{M_2}) \ge \min (1, d(A_{M_1}) + d(A_{M_2}))$$

in view of Lemma 2 and the following

LEMMA 6.
$$D(A_{M_1+M_2}^+) = D(A_{M_1}^+ + A_{M_2}^+)$$
.

PROOF. Consider a covering of the set M_1 by a finite number of cubes C_i with $\mu_k(C_i) = \epsilon$, and let S be the set of points m in $\{M_1 + M_2\}$ which have representations

$$\mathfrak{m} \equiv \mathfrak{m}_1 + \mathfrak{m}_2 \pmod{1}, \qquad \mathfrak{m}_i \in M_i,$$

for at least all the points \mathfrak{m}_1 in one of the C_i 's. Then the remaining set $R(\epsilon) = \{M_1 + M_2\} - S$ satisfies $\lim_{\epsilon \to 0} \mu_k(R(\epsilon)) = 0$. Due to uniform distribution, there is an $N(\epsilon)$ such that each C_i contains a point $\mathfrak{g}(\mathfrak{a}_1)$, $\mathfrak{a}_1 \in A_{M_1}^+$, with $\|\mathfrak{a}_1\| \leq N(\epsilon)$. Thus, if $\mathfrak{a} = (a_1, \dots, a_k) \in A_s^+$ and $a_k \geq N(\epsilon)$ for $k = 1, \dots, k$, then there is such a point \mathfrak{a}_1 for which $\{\mathfrak{g}(\mathfrak{a}) - \mathfrak{g}(\mathfrak{a}_1)\} \in M_2$ and, since all coordinates of $\mathfrak{a} - \mathfrak{a}_1$ are non-negative, $\mathfrak{a} - \mathfrak{a}_1 \in A_{M_2}^+$. Therefore, $A_s^+ \subseteq A_{M_1}^+ + A_{M_2}^+$, hence

$$D(A_{S}^{+}) = D(A_{\{M_{1}+M_{2}\}}^{+}) - \mu_{k}(R(\epsilon)) \subseteq D(A_{M_{1}}^{+} + A_{M_{2}}^{+}).$$

This proves the contention by virtue of Lemma 1.

Theorem 2 is also true for natural densities D(A) of sets of lattice points with non-negative coordinates; in the proof reference has to be made to Lemma 6 instead of to Lemma 2.

REFERENCES

- 1. R. C. Buck, The measure-theoretic approach to density, Amer. J. Math. vol. 68 (1946) pp. 560-580.
- 2. L. P. Cheo, A remark on the $\alpha+\beta$ -theorem, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 175–177.
- 3. M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Zeit. vol. 58 (1953) pp. 459-484.
- 4. B. Lepson, Certain best results in the theory of Schnirelmann density, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 592-594.
- 5. A. M. Macbeath, On measure of sum sets. II. The sum theorem for the torus, Proc. Cambridge Philos. Soc. vol. 49 (1953) pp. 40-43.
- 6. B. Volkmann, Über Klassen von Mengen natürlicher Zahlen, J. Reine Angew. Math. vol. 190 (1952) pp. 199-230.
- 7. H. Weyl, Über die Gleichverteilung von Zahlen mod 1, Math. Ann. vol. 77 (1916) pp. 313-352.

University of Utah and University of Mainz