ON UNIFORM DISTRIBUTION AND THE DENSITY
OF SUM SETS
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1. For any lattice point a=(ay, - - -, ax) in the k-dimensional
euclidean space R¥, let Ha” =MaXe1,..t |@]|. If 4 is an infinite set
of such lattice points, we define for x>0 the counting function 4 (x)
to be the number of elements a4 satisfying ||a|| <x. Then various
densities for such sets A can be introduced as generalizations of the
well-known densities of sets of non-negative integers. In particular,
we shall denote the lower limit, the upper limit, and, in the case of
its existence, the limit, of the sequence A(x)/(2x)*, as x tends to
infinity, by d«(4), d*(4), and d(4), respectively. Furthermore, if 4 is
restricted to have elements with non-negative coordinates only, we
shall consider the corresponding expressions of the sequence 4 (x)/x*
and denote them by D«(4), D*(A4), and D(A4). According to the ter-
minology in the case k=1, we shall call these limits the lower and
upper asymptotic densities and the natural density® of 4, respec-
tively.

The sum set 4 +B of two sets 4 and B in RF is, as usual, defined
to be the set of all points a+b, aE A4, bEB, obtained by vector addi-
tion.

By an interval I C R¥ we mean the cartesian product of any %k open
intervals of R!. The unit cube, i.e. the set of all points r = (x1, - - - , x&)
with 0=x,<1 (k=1, - - -, k), is denoted by C*.

For any real number «x, let [x] denote the greatest integer <x and
let {x} be the fractional part x—[x]. Then, for every point
t=(x1, - - -, xx), let {g} =({x1}, e, %xk}), and for every set
MCR*, let { M} be the set of all points {r} with t& M.

The Jordan content of a set M & R* is denoted by ux(41).

A sequence Iy, Iz, - - - is called uniformly distributed (mod 1) if
it has the following property: Let, for any interval I CC*, Ny be the
set of indices 7 such that {z;} €I. Then N; has a natural density
D(N1) =ux(I).

2. In the case 2=1 an analogue of Mann’s Theorem has been
proved for lower asymptotic densities by M. Kneser [3]. In the ab-
sence of a similar theorem for £>1 the present paper aims at estab-
lishing the inequality of the (¢+8)-theorem for a certain class of sets
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! See, for instance, B. Volkmann [6].
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of lattice points defined by means of uniformly distributed sequences.

Let Ay, - - -, A\ be fixed positive irrational numbers and let, for
any lattice point a=(ay, - - -, ax), p(a) =\, * - -, Meax). Further-
more, if M is an open subset of C¥, let 4y be the set of lattice points
a such that {p(a) } € M. If then Af; denotes the set of those elements
of Ay which have non-negative coordinates only, the following theo-
rem holds:

THEOREM 1. For any two open sets M, Z C* and M, C*, the following
densities exist and satisfy the inequalities:

(1) D(ATwyeay) Z min (1, D(43r,) + D(43,))
and
(2) d(A(M1+M3‘) ; min (1' d(Aul) + d(AMz))°

For the proof the following lemmas are needed:

LemMA 1. Under the conditions of the theorem,

3) Alsiag D Aar, + A,

PRrOOF. Let a be an element of Ay, +A%, Then there are lattice
points a; and a; with non-negative coordinates such that a=a;+a,,
{p(a;)}EMl, {p(az)}EMg. Hence {p(a1+a2)}€{M1+M2} and con-
sequently, A €A s, 1 u,)-

LeEMMA 2. Under the conditions of the theorem,

(4) A‘Ml-l-M’) = AMl + AM,-
PRrROOF. As in Lemma 1, the relation
(5) A(M1+Mg, ;)AMI_'- AMz

is obtained immediately. To prove the opposite inclusion, let
aeA(MﬁMa}' Then {p(a) } c {M1+M2} , l.e.

(6) {p@} =m+ ms (mod 1), m; € My, my € Mo

Since the sets M; and M, are open there exists an €¢>0 such that the
interval

(miy — e,mi + € X (Mmia — e,mie + €) X = -« X (mix — €, mix, + €
(i=1,2)

is contained in M; if m;=(mq, - - -, ma). By a theorem due to Her-
mann Weyl [7] each of the k sequences \@ (=0, 1, 2, - - - ) is uni-
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formly distributed and therefore the sequences {)\Ka} are everywhere
dense in the interval C!. Thus there exists a lattice point
a;=(au, - + +, ai) such that

(7 M — € < {Man) < mi+ e (k=1,--- k)
and consequently, a;&4 . Letting a;=a—a; one obtains
{p@} — {p(an} = {p(a)} (mod 1)
and hence, if a;=(aa, - - -, ax), (7) and (6) imply
{D(a2>} € (ma — €, may+ € X - -+ X (mar — €, may + ¢),

therefore 0, Ay, and aEA y,+Au,. In view of (5), this establishes
the lemma.

LEMMA 3. If the set of all lattice points in R* is ordered as a sequence
ay, Gy, - - - in such @ way that ||an|| <||a.|| implies m <n, then the se-
quence p(01), p(az), + + - s uniformly distributed.

Proor. From Weyl’s theorem referred to above, it follows that
each of the % sequences \,a (¢=0, +1, +2, - - ) is uniformly dis-
tributed in the sense that, for any interval I,EC?, the set A has
the density d(4r,) =m(l,). By definition, the first (2x+1)* terms of
the sequence @i, az, - - - are exactly all the lattice points a with
|lal| <x. Therefore, if I=I1XI:X - - - XI is an interval in C*, then
the counting function of the set 4; is

Ar(x) = Ar(2)Ar(%) - - - A1 (%),
and thus the k asymptotic equations
An(x) =2 22-pi(1) (k=1,---,k)
imply
k
Ar(x) = 22)* [T w(1) = (22)*ui(I)

k=1

and therefore d(4r) = ux(I).
Since obviously D(4},) =d(A1,), one also obtains

D7) = w1).
LEMMA 4. For any open set M T C* there exist the densities

d(Au) = D(A) = m(M).

ProoF. Let €>0, then there are sets R, and R¢ which are finite
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unions of intervals, such that RRCMCR¢ and u(Re) —ur(Re) <e.
Then Lemma 3 implies that

pr(Re) = dy(An) = d*(Au) = pe(R)

and therefore, since € is arbitrary, d(4x)=u(M). The equation
D(A%) =u (M) is obtained analogously.

LeEMMA 5. For any two open sets M1 C*, M, C¥,
(8) pe({ M1+ Ma}) = min (1, (M) + p(Mo)).

Proor. If all boundary points of C* which the set {M1+Mz} may
contain are removed from it, the remaining set is obviously open.
Therefore {M1+M2} has a content and (8) follows directly from
A. M. Macbeath [5, Theorem 1].

Now Theorem 1 follows from Lemma 4, applied to the three sets
My, M,, and { M+ M} and Lemma 5.

COROLLARY. If My, - - -, M, are open subsets of C?, then
9) Atstgrogmy) = Ay + - -+ + An,
and
(10) (A rs-s3e,)) Z min (1, > d(AM..>).
=1

Proor. Follows from the theorem by induction.

3. In the case k=1, Theorem 1 can be proved directly from
Kneser’s Theorem mentioned above, and consequently, the special
case for linear, open sets of Macbeath’s Theorem follows then as a
corollary.

To establish this, we use the concept of a rational set of non-nega-
tive integers,? i.e. a set whose characteristic function with respect to
the set of all non-negative integers is ultimately periodic. In this sense
the set A +AjJ, is not rational whenever its lower asymptotic
density is different from 1, for otherwise there would be some residue
class P such that the intersection P+*M (A, +A4,) is empty or finite.
If then P; and P, are any two residue classes such that Py +P; = P+,
it follows that at least one of the intersections A3, MNPy and 4§, \P5,
say, the first one, is empty or finite; otherwise Aj}l—l—AIT;z would con-
tain infinitely many elements of P+. But the sequence {)\1 a} with
a € Pf is itself uniformly distributed® and must therefore, because of

2 Cf. [1] and [6].

3 Cf. [7].
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m (M) >0, have infinitely many elements in M;. This contradicts
the assumption that A}',1+A7|}2 is rational.

Kneser’s Theorem implies that for any two sets 4 and B of non-
negative integers whose sum set A+ B is not rational,

Dy(4 + B) 2 min (1, Dy(4) + Dx(B)).
This proves (1) from which (2) can easily be obtained by decompos-

ing the sets 4, and 4 3, into the subsets of their non-negative and of
their negative elements.

4. The question may be raised what wvalues the density
d(A;+ - - - + A,) canassumeif d(4,), - - -, d(4,) are prescribed. As
an answer to this question we prove the following

THEOREM 2.4 If ay, - - -, ata, and 7y are positive real numbers satisfy-
ing E:',l a; Sy =1, then there are sets Ay, - - -, A, of lattice points in
RF such that

ddy) =a; (=1, ,n) and d(4,+ -+ + 4,) = 7.

Proor. In view of Lemmas 2 and 4 it suffices to show that there
are open subsets M, - - -, M, of C* such that

(1) p(M) =a;(i=1,---,n) and w({ M1+ - - - + M.}) = v,

since the conditions of the theorem are then satisfied by the sets
A= Au,, Ar+ -+ An = Aty 4 m,)-

Furthermore, we may restrict the proof to the case k=1; for, if

M, - - -, M, are subsets of C?! satisfying (11), then the cartesian
products M;X Ck1, - - - | M, X C*1 together with the set

{(M1X€k~1)+...+ (M”X'C-k—l)} = {M1+... +Mn} X C+1,

C*¥! being the interior of C¥1, will satisfy (11) in the k-dimensional
sense.

Such sets M can, for example, be constructed as follows: It may be
assumed without loss of generality that ey =@, = - - - Za,. Then, for
i=1, - - -,n—1,let M;be the open interval (0, ;) and leto = D ;= a;.
For the definition of M, the following two cases are distinguished:

(a) If v/ is an integer ¢ (hence ¢=2 since y —o=a.>0), let

-2 an an
M,=U (ja,jo + —)U ((q - o — —>(¢g— 1)0).
=0 q q

4 In the case of lower asymptotic densities of sets of integers a similar existence
theorem was proved, by a different method, by L. P. Cheo [2] who used an idea of
B. Lepson [4].



1957 THE DENSITY OF SUM SETS 135

These ¢ intervals are nonoverlapping as the distance of the “last”
two is 0 —2a,/g =0 (1 —2a,/v) >0 (for Y= D ", a;=2a,), and other-
wise the distance of any two adjacent intervalsis ¢ —a,/g¢>0. There-
fore, u1(M,) =a, and, as is readily seen, M1+ -+ - +M,1=(0, o),
consequently

—2

{My+ - + M.} =M1+---+M,.=U<ja,(j+1)a+3q’3)
=0

V(- 1o - =, ) = 0,00 = (0.7

(b) If y/o is not an integer, a number ¢>0 is to be chosen such
that

¢ <min (wj’;J 5 = bn/elo)

and M, is defined as
[y/o—1]
M= Oen = ela/e DU U Ginjo+ 9)U by = s =y = o)

j=1

Then as in case (a) the intervals of M, are nonoverlapping as the
“first” two of them obviously have a positive distance, the “last”
two of them have the distance

N (ARTO S

and otherwise the distance between any two neighboring intervals is

> s (1 a")>0
g — € g - (2 - .
[v/e] v

Thus
w(M,) = a, — e[-z-] + e~[-z-— 1] +e=an
s

g
and

{Mi+ -+ M.} =(0,0) + M. = (0, 7).

Added in proof (January 11, 1957). The inequalities of Theorem 1
may be expressed as
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(19 D4}, + 43,) Z min (1, D(4}r,) + D(43r,)),
(2%) d(Am, + Ax,) 2 min (1, d(An) + d(4ar,))
in view of Lemma 2 and the following

LEMMA 6. D(A 1 u,) = D( AT+ AL

Proor. Consider a covering of the set M; by a finite number of
cubes C; with u(C;) =€, and let S be the set of points m in { M;+ M;}
which have representations

mEm1+m2 (mOd 1), mieMiv

for at least all the points m; in one of the C,’s. Then the remaining
set R(e) = {M1+M2} — S satisfies lim_.o ux(R(€)) =0. Due to uniform
distribution, there is an N(e) such that each C; contains a point
a(a), mEAR, with ||a)| S N(e). Thus, if a=(as, - - -, az) EAF and
a,=N(e) for k=1, - - -, k, then there is such a point a; for which
{g(a) —g(a) } € M: and, since all coordinates of a—a; are non-nega-
tive, a —a; EA Y, Therefore, 4§ S A5, + A%, hence

D(A%) = DAl ay) — ur(R() S DAy, + Ao

This proves the contention by virtue of Lemma 1.

Theorem 2 is also true for natural densities D(A4) of sets of lattice
points with non-negative coordinates; in the proof reference has to
be made to Lemma 6 instead of to Lemma 2.
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