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In this paper the following theorem will be proved: A necessary

and sufficient condition that the numerical range of a bounded normal

operator T in a Hilbert space is closed is that the set of extreme points

of the convex closure of the spectrum of T contains no points of the con-

tinuous spectrum of T.

A few terms should be properly defined. The numerical range of a

linear bounded operator P in a Hilbert space is defined as the set of

all complex numbers of the form (Tx, x) where x is a unit vector in

the space. Clearly the numerical range of T contains the point spec-

trum of T. Stone [2 ] proved that the numerical range of a bounded

linear operator T is convex, and that if T is normal then the closure

of its numerical range is exactly the convex closure K(T) of the

spectrum of P. A point X of K(T) is defined as an extreme point of

K(T) if no line segment joining any two points of K(T) other than X

contains X. Denote by A the set of extreme points of K(T). It is easy

to see that A is contained in the spectrum of P, and that the convex

closure of A is exactly K(T). Hence the sufficiency of the condition

follows readily from these facts.

The necessity of the condition can be proved by contradiction.

Suppose that there exists a point ao in A such that a0 lies in the

continuous spectrum of P. Now the numerical range of T is closed,

and hence ao lies in it. So we can find a unit vector x in the space

such that ao = (Tx, x). Since T is bounded and normal, it has a resolu-

tion of the identity {E\}, and P can be represented as an integral

with respect to {P\}, [l], i.e.,

T =  f \dEx
J a

where G is any large circle containing the spectrum of T in its interior.

Therefore we have:

a0 = (Tx, x) =  f \d\\Fix\\2.
J a

For each « = 1, 2, 3, •••, consider the open circle Dn about the
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point a0 with radius 1/2", and denote by Xn(k) the characteristic

function of Dn, i.e., XH(X) = 1 for X in Dn, and =0 otherwise. Since

every Borel set is measurable with respect to {E\}, [l], for each

« = 1, 2, 3, • • • , we have

7=   f dEx
Jo

=  f Xn(\)dEi +  f [1 - X„(X)]<f£x
J g J a

=   f   XnMrfTix +   f   [1 - X„(X)]<LEX,

where G„ is any convex region containing D„ in its interior, and Rn is

any region containing in its interior the set of the spectrum of T less

7>„; in particular, one can choose R„ such that ao is at a positive dis-

tance outside of Rn and Rn is convex. This can be done because ao is

an extreme point of K(T). Let for each n = l, 2, 3, • • • ,

Pi..-   f  Xn(\)dEx,       F2,n=  f   [1 - Xn(\)]dEx,
J0, J R„

then Pi,n and T^.n are projection operators and are orthogonal to

each other. It is claimed that for each n = 1, 2, 3, • • • , F2,nx = 6. Sup-

pose not, then let c,>„ = ||7?,-,nx||2 for i = l, 2. So we have for some n,

c2,n>0, and

1  =  \\Fi.nX + F2,nx\\2 =  |K„*||2 + llFj.n*!!2 =  CUn + C2,n.

Hence 0^ci,„<l and 0<c2,„^l. Since the regions Gn and Rn are

convex, we may apply the mean value theorem and deduce that

a0= (Tx,x) =  fx(f||£x*||2
J a

=  f XX„(X)cf||£x*||2+ f X[l-X„(X)]rf||£xx||2
J Gn J R

=   Xl,nCl,n "f"  Xj,nC2,n

where Xi,„ lies in G„, and X2,n lies in R„. Since Rn is so chosen that it is

at a positive distance away from a0, therefore X2,n is not equal to a0

which implies that 0<Ci,„<l, 0<c2,n<l, and Xi.n^ao- Hence both

Fi,„x and F2,nx are not zero vectors. Consider the unit vector y2,n

= 7"2,nX/||F2,nx||; then we have
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(Ty2,n, y2.„) =   f X</||£xyS,n||2
J a

\\F2,nX\\2J G

=- f\df   [1 - Z„(M)]i||Px£/,x||2
Cl,n J a      J fl„

=- f X[l - Xn(\)]d\\Exx\\2 = X,.».
Ci n J Rn

Hence X2,„ lies in the numerical range of P. Similarly, Xi,n lies in the

numerical range of P. Now by hypothesis the numerical range is

closed, and P is normal, and consequently the numerical range is

exactly K(T). However, we have

ao =  Ci,nXilB + Cj,„X2l„

with ci,„+c2,n=l, 0<Ci,„, c2,n<l, and Xi,n?£<Xo5,£X2,„. Furthermore a0

is an extreme point of K(T). So this is a contradiction.

Therefore we conclude that F2,nx is a zero vector for all n — l, 2,

3, ■ ■ ■ , which implies that Fi,nx — x for all n = l, 2, 3, • ■ • . Now for

all»=l, 2, 3, • • • ,

Tx=  f UExx =  f UExFi,nx
Jo J a

=  f\d f Xn(p)dExE,x
J a    J a„

=  f XX„(X)<f£x*,
J an

and

|| Tx - a0x|| =     I    \Xn(\)dExx - a0 I   Xn(\)dExx
WJan J Gn

=     f  (X - ao)X„(\)dEix\\

1
^ max    X — do     ^-> 0

xSz)n "  2"

as n—>oo. Therefore Fx = aoX which implies that ao lies in the point

spectrum of T. However the point spectrum and the continuous spec-
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trum of T are mutually exclusive, and consequently we have a contra-

diction. Hence the theorem is proved. The following corollary is an

immediate consequence of the theorem:

The numerical range of a unitary operator in a Hilbert space is closed

if and only if the spectrum of the unitary operator consists entirely of the

point spectrum.
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ON POSTULATES FOR GENERAL QUANTUM MECHANICS

D. B. LOWDENSLAGER1

A collection of postulates for the observable quantities in a general

quantum mechanical system has been given by Segal, [4]. In this

system, the observables form a real Banach space 5 which is partially

ordered by a closed convex positive cone P, and which has a unit

element e interior to the positive cone, all satisfying PC\(e—P)

= 5i(e)nSi(0), where Sr(x) is the solid sphere of radius r, center x.

Alternatively, 5 is a partially ordered linear space with an element

e>0 which is a Banach space under the norm ||x||=min {X: — \e

gx^Xe}, where the minimum is attained. Let us call such a space a

partially ordered Banach space with unit. We shall show that any such

Banach space S with order unit e can be given the algebraic structure

postulated by Segal, in possibly different ways. In this proof it is

very useful to have an alternative formulation of Segal's postulates

stated in terms of the partial ordering alone. We are then able to give

examples of such systems with various pathologies and to classify the

three dimensional ones. Finally we shall give a necessary and suffi-

cient condition that a system of operators satisfying these postulates

be a C* special Jordan algebra: the system of hermitean elements of a

C* algebra.
Definition. A spectral function L on a partially ordered Banach

space S with order unit e is a function assigning to each point xES a
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