
WEAKLY TOPOLOGIZED ALGEBRAS

SETH WARNER

Let E be an algebra over the reals or complex numbers, E' a total

subspace of the algebraic dual of E, cr(E, E') the weak topology de-

fined on E by E'. In Theorems 1 and 2 of [2], the author established

necessary and sufficient conditions for E, equipped with topology

a(E, E'), to be a locally w-convex algebra and to be a topological

algebra. Actually, these conditions may be combined as follows:

Theorem 1. The following are equivalent: (1) E; a(E, E') is a locally

m-convex algebra. (2) E; <r(E, E') is a topological algebra. (3) For every

gCE', the kernel of g contains a (weakly) closed ideal of finite codimen-

sion. (4) (x, y)—^xy is (weakly) continuous at (0, 0).

Proof. (1) and (3) are equivalent by Theorem 1 of [2]; (2) and

(4) are equivalent by Proposition 6 of [l, p. 8] since (x, y)—>xy is

bilinear; and clearly (1) implies (2). It remains to show (4) implies

(3). For this we need the following lemma, the proof of which is very

similar to that of Lemma 1 of [2] and is therefore omitted:

Lemma. Let gCE', let W be a neighborhood of zero for a(E, E'), and

let J be a subspace of E such that JQWQWJWi\JW*Q[x\ \g(x)\
< 1 ]. Then J, JE, EJ, and EJE are contained in the kernel of g.

To complete the proof of the theorem, consider any gCE'. There

exists by (4) a (weakly) closed, convex, equilibrated neighborhood W

of 0 such that WQ wyJW*VW*Q [x\ \ g(x) | < 1 ]. Let /= D [u~H0) \ u
CW0]. Then JQW00=W, and J is a (weakly) closed subspace of

finite codimension by Lemma 2 of [2]. The ideal L generated by J

is clearly identical with the subspace generated by J\JEJKJ JEKJEJE

and hence by the lemma is contained in the kernel of g. Let <p be the

canonical map from locally convex space E onto the Hausdorff,

finite-dimensional, locally convex space E/J. <p(L) is a subspace of

finite-dimensional E/J and hence is closed. Thus L=L+J=dy*1 (<p (L))

is (weakly) closed in E. Therefore L is a (weakly) closed ideal of

finite codimension contained in the kernel of g, and the proof is com-

plete.
Now let £ be a Hausdorff locally m-convex algebra, E' its topologi-

cal dual. Multiplication is then separately continuous in each variable
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when E is given the associated weak topology <r(E, E'). (For if

La: x—>ax, to show La is continuous when E is equipped with o-(E, E'),

it suffices to show that for all uEE', the linear form u o La is weakly

continuous; but u o La is a continuous linear form on £ equipped with

its given topology; hence u o LaEE' and so is weakly continuous.)

The following theorem shows, however, that for a familiar class of

Banach algebras, multiplication is not weakly continuous in both

variables.

Theorem 2. Let E be a commutative, semi-simple, self-adjoint Ban-

ach algebra over the complex numbers. Then E; <r(E, E') is a topological

algebra if and only if E is finite-dimensional.

Proof. The condition is clearly sufficient, for if E is finite-dimen-

sional, a(E, E') is the given topology of E. Necessity: Let 911(E) be

the set of all (continuous) nonzero multiplicative linear forms. Then

by hypothesis {o} =C\[u~1(0)\uE^fl(E)}. Suppose E is infinite-

dimensional. Then {oj has infinite codimension, and hence 911(E)

must be infinite. Let (mb}"-i be a sequence of distinct members of

9TC(E). It is well-known that 911(E) is a bound subset of the strong

dual Ei of E and that Ei is complete; hence g= £T-.i 2~nu„ exists

and is a member of E'. By (3) of Theorem 1, the kernel of g contains

a weakly closed ideal L of finite codimension. For any xEL, xx*EL,

whence 0 = g(xx*) = £"_! 2-"un(xx*) = £"=x 2~n\un(x)|2; therefore

w„(x) =0 for all n and all xEL, i.e., un(L) = {o} for all n. Therefore

there exists, for each integer n, a nonzero multiplicative linear form

un on the finite-dimensional algebra E/L satisfying un 0(j> = un, where

<p is the canonical homomorphism from E onto E/L. {iln}n-i ls then

a sequence of distinct, nonzero multiplicative linear forms on E/L

and thus by Proposition 2 of [2] is a linearly independent subset of

the dual (E/L)' of E/L. Hence (E/L)' is infinite-dimensional. But as

L is of finite codimension, E/L and hence also (E/L)' are finite-

dimensional. This contradiction completes the proof.

The proof of Theorem 2 is available under far more general cir-

cumstances than those of the theorem. Indeed, an obvious modifica-

tion of the proof shows that if £ is a locally m-convex algebra satisfy-

ing the following conditions, multiplication is not continuous for the

associated weak topology: (1) {o} = n[w_1(0)|M£91T(E)], where

911(E) is the set of all continuous, nonzero multiplicative linear forms

on E; (2) E is self-adjoint if the field of scalars is the complex num-

bers; (3) There exists an infinite subset {u„} "=1 of 911(E) and scalars

X„>0 such that {\nU„}„°-i is a bound subset of the strong dual Ei of

E; (4) Ei is quasi-complete.
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SUMS OF THREE SQUARES

N. C ANKENY1

Introduction. I would like to present here a short and elementary

proof of the following theorem.

Theorem 1. If m is a positive integer not of the form 4°(8w-f-7), then

m is the sum of three squares.

We make use of an elegant method of Professor H. Davenport [l]

in the Geometry of Numbers.

Without loss of generality we will prove Theorem 1 only when m

is square free. (In the following m will be assumed to be square free.)

In §1 we shall prove Theorem 1 when m = 3 (mod 8). In §2 we will

merely outline the proof when m = l, 2, 5, 6 (mod 8), as the proof is

almost identical except for minor changes.

We shall only assume the reader is familiar with the elementary

facts of the law of quadratic reciprocity, Minkowski's Theorem on

lattice points contained within convex symmetric bodies; and when

a positive integer is the sum of two squares.

1. Let m be a positive square free integer =3 (mod 8), and

m = pipt • • ■ pr where p/s are primes.

Denote by q a positive prime which satisfies

(1) (-2q/p,) = + l, 7 = 1,2,   •-.r,

(2) q=l (mod 4)

with (a/b) denoting the Jacobi Symbol. We see that such a prime

exists by Dirichlet's theorem regarding primes in an arithmetic pro-
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