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ON THE IDENTITIES OF CERTAIN ALGEBRAS

ADIL YAQUB

Introduction. One basic problem in the study of finite algebras is

concerned with the existence of a finite basis for the identities of the

algebra, i.e., a finite set of identities from which all the identities of

the algebra are logical consequences. That the identities of a finite

algebra need not have a finite basis (in the above sense) has already

been observed by Lyndon [3]. This leads naturally to the following

question: are there certain classes of finite algebras the identities of

which possess a finite basis? We shall answer this question in the

affirmative. Indeed, the main result of this paper is the following

Theorem. A functionally strictly complete algebra which contains

more than one element has a finite basis for its identities.

1. Preliminary concepts. In this section, we shall review some basic

concepts and definitions, all of which are to be found in Foster [l; 2 ].

Let 21 = (A, p, • ■ ■ ) be a universal algebra with primitive opera-

tions p, •    • . Let A = {•■-, x,   • • • }.

A (^-ary) %-function f(xi, ■ • ■ , x») is a composition, via the primi-

tive operations, of indeterminate symbols Xi, • • • , xk over the set A

together with a (possibly empty) set of constants1 ( = fixed EA).

An 2l-function is called strict if it involves no constants.

In an obvious way each 2I-function/(xi, • • • , xk) represents (or has

associated with it) a mapping of the set Ak into A, where of course

different 2I-functions need not represent different such mappings. If

3I-functions/(x, • • • ) and g(x, • • • ) represent the same mapping we
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speak of an ^.-identity, f(x, ■ ■ ■ ) =g(x, • • • )• If both / and g are

strict 2I-functions we speak of a strict %-identity.

21 is finite, of order ra, if A is a class of ra elements.

21 is said to be (functionally) complete—respectively (functionally)

strictly complete—if A is finite and if each mapping of the set

A X ■ ■ • XA into A may be expressed as some fi-function—respec-

tively as some strict %-function. For examples and criteria of func-

tional completeness see [l; 2].

2. The finite basis theorem. In preparation for this theorem, we

recall the following result which was proved in [2] and which we

shall state as a lemma.

Lemma 1. Let XX, U be any universal algebras of the same species and

each containing at least two elements, and where

(a) U is finite and functionally strictly complete.

(b) Each strict identity of U is also an identity of W.

Then

ii)  XX is isomorphic with a subdirect sum of U.

(ii)  U and W satisfy precisely the same strict identities.

This is an immediate combination of Theorem 9.1, Theorem 9.2 and

Theorem 6.2 of [2].

Although in the above lemma we assumed that each strict identity

of U is also an identity of ll, in the proof of this lemma only a finite

number of strict U-identities were assumed to be U-identities (see

[l; 2]). Let this finite set of strict U-identities be denoted by 7. It is

now fairly evident that the above lemma can be strengthened as fol-

lows :

Lemma 1'. Same as Lemma 1 except that hypothesis (b) is now re-

placed by the weaker hypothesis

(W) Each strict identity of U in the set I is also an identity of U.

We are now in a position to prove the following important

Theorem 1. Let U be a functionally strictly complete algebra of order

ra^2. Then the strict identities of U have the above finite set I of strict

U-identities as a finite basis.

Proof. Let 23 be any algebra which satisfies set 7 and let L be any

strict identity of U. Theorem 1 will be proved by showing that L is

also a strict identity of 23. But this follows, since if S3 is a one-element

algebra, 23 obviously satisfies L, while if S3 has order greater than 1,

23 again satisfies L by Lemma 1' (conclusion (ii)). This proves the

theorem.
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We shall conclude the paper by referring to Lyndon's example [3],

It is of course to be noted that his algebra is not strictly functionally

complete. This is easily seen from Theorem 1 above, and is indeed

clear by inspection.

In conclusion, I wish to express my gratitude and indebtedness to

Professor A. L. Foster for his generous counsel.
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