NOTES ON LINEARLY COMPACT ALGEBRAS

TI YEN

Let A be a linearly compact ring with ideal neighborhoods of zero, and let N be its radical. Zelinsky shows that [3, Theorem 1] A / N is algebraically and topologically isomorphic to a complete direct sum (i.e., a cartesian product) of discrete simple rings with minimum condition. In case A is commutative, then [3, Theorem 2] A is algebraically and topologically isomorphic to a complete direct sum of a radical ring and primary rings with units, all the summands being linearly compact. If A is an algebra and the closure of powers of N has zero intersection, he then shows [4, Theorem C, p. 320] that A (having the usual properties) satisfies the Wedderburn principal theorem. The restriction of N is needed at two stages: raising of orthogonal idempotents of A / N to orthogonal idempotents of A, and the inductive process of producing the semi-simple part. We propose to show that, if A is commutative, the Wedderburn principal theorem is valid without restriction on N. The problem of raising orthogonal idempotents no longer exists, for idempotents which are orthogonal modulo N are already orthogonal; indeed to each idempotent in A / N there is only one idempotent representative in A. By [3, Theorem 2] we can restrict ourselves to primary algebras. Then A / N is a field and we may avail ourselves of the results of field theory to construct the semi-simple part. Our main tool (Lemma 1) is a result of Jacobson [2, Theorem 6]. It also follows easily from this that we can raise a countable number of idempotents with no restriction on the radical. We use the terminology of [3].

The author wishes to acknowledge his thanks to Professor Zelinsky for his many valuable comments.

1. We need the following result which is a slight modification of [2, Theorem 6] to topological rings with ideal neighborhoods of zero. Its proof is effectively the same as that of [2, Theorem 6].

Lemma 1. Let A be a topological ring with ideal neighborhoods of zero. Let I be a closed subring contained in the radical of A. Then, for each $a \in I, a=0$ if the closure of $a I$ is I.

Let A be a linearly compact commutative primary algebra with

[^0]unit over a field K. Then A / N is a field extension of K. Every element u not in the radical has an inverse, for it has an inverse v modulo N and $u v$ has an inverse by the definition of the radical. We assume that A / N is separable over K, i.e., there is a transcendence base $\left(\alpha_{i}\right)_{i \in I}$ such that A / N is separably algebraic over $K\left(\left(\alpha_{i}\right)_{i \in I}\right)$.

Theorem 1. Let A be a linearly compact commutative primary algebra with unit over a field K, and let N be its radical. Suppose A / N is separable over K. Then $A=S \oplus N$, where S is a closed subalgebra isomorphic to A / N.

Proof. Let $\left(\alpha_{i}\right)_{i \in I}$ be a transcendence base of A / N over K, and let $\left(a_{i}\right)_{i \in I}$ be a set of representatives in A. Then no polynomials in $\left(a_{i}\right)_{i \in I}$ with coefficients in K will take values in N. Hence, A contains the field F generated by $\left(a_{i}\right)_{i \in I}$ over K, and A may be considered as an algebra over F. Therefore, we may assume that A / N is separably algebraic over K.

First consider the case that A / N is finite over K. Then $A / N=K(\theta)$ for some element $\theta \in A / N$. Let a be a representative of θ. Denote by $K[a]$ the polynomial ring in $a . K[a]$ will be the desired algebra if $f(a)=0$, where f is the minimal polynomial of θ. We find such an a as follows. Consider the collection of all subvarieties $a+I$, where a is a representative of θ and I is a closed ideal containing $f(a)$. Partially order this collection by set inclusion: $a+I>a^{\prime}+I^{\prime}$ if and only if $a+I \subset a^{\prime}+I^{\prime}$. Because of linear compactness, every linearly ordered subset of this collection has a least upper bound. Hence there is a maximal element, $a+I$ say. We claim $f(a)=0$. Suppose $f(a)=n \neq 0$. Since A / N is separably algebraic over $K, f^{\prime}(a) \not \equiv 0(\bmod N)$, where f^{\prime} denotes the formal derivative of f. Let b be the inverse of $f^{\prime}(a)$ and $a^{\prime}=a-b n$. Then $f\left(a^{\prime}\right)=f(a-b n) \equiv f(a)-f^{\prime}(a) b n \equiv 0(\bmod n I)$. By Lemma $1, a^{\prime}+I^{\prime}>a+I$, where I^{\prime} is the closure of $n I$. This contradicts the maximality of $a+I$.

In general, let S be a maximal subfield contained in A. If $A / N \neq S$ then we may extend S to a field $S(a)$ by above paragraph. Hence $A=S \oplus N$. Since N is the unique maximal ideal of A, S is a closed subalgebra of A.

Remarks. (1) The subfield S is unique if it is algebraic over $K .{ }^{1}$ Suppose $A=S \oplus N=S^{\prime} \oplus N$. Take an $s \in S, s=s^{\prime}+n$ with $s^{\prime} \in S^{\prime}$ and $n \in N$. Let f be the minimal polynomial of $s+N=s^{\prime}+N$. Then $0=f(s)=f\left(s^{\prime}+n\right)=f\left(s^{\prime}\right)+f^{\prime}\left(s^{\prime}\right) n+\cdots$. Since $f\left(s^{\prime}\right)=0$ and $f^{\prime}\left(s^{\prime}\right) \neq 0$, $n=0$ by Lemma 1. It is clear that if A / N is not algebraic over K then S is no longer unique.

[^1](2) If A is a primary ring with unit and of characteristic zero (i.e., $k x=0$ implies $x=0$, where k is any positive integer), then Theorem 1 is still valid. For in this case A can be considered as an algebra over the field of rational numbers.
(3) If A / N is finite over K, the commutativity of A enters only in A / N; when we deal with A we only consider elements of the form $a, f(a), f^{\prime}(a), \cdots$. If only the commutativity of A / N is assumed, we do not know whether S is still unique.

Theorem 1 together with [3, Theorem 2] yields:
Theorem 2. Let A be a linearly compact commutative algebra over a field K, with ideal neighborhoods of zero. Then [3, Theorem 2] A is algebraically and topologically a complete direct sum of primary algebras with unit and a radical algebra, each summand being linearly compact. Suppose that the quotient algebra of each primary summand over its radical is separable over K. Then A contains a closed subalgebra S such that $A=S \oplus N$ (vector space direct sum), where N is the radical of A. Moreover, S is unique if each quotient algebra is algebraic over K.
2. The condition that the intersection of powers of N be zero enters into the task of raising idempotents only when we want to raise any number of them. If we are willing to restrict ourselves to a countable number of idempotents then linear compactness alone will do, as is shown in the following lemma. From this we get an analogue of [1, Theorem 1].

Lemma 2. Let A be a linear compact ring with ideal neighborhoods of zero, and N its radical. Then a countable number of orthogonal idempotents can be raised to orthogonal idempotents in A.

Proof. It suffices to consider two idempotents \bar{e}, \bar{f} in $A / N, \bar{e} \bar{f}=0$. Let e be an idempotent in A representing \bar{e}. If a is a representative of \bar{f}, then $b=a-e a-a e+e a e$ is also a representative, and $e b=b e=0$. Let I be the closed principal right ideal generated by $n=b^{2}-b$. Since $e b=0, e I=0$. Consider the collection of subvarieties $a+I$, where $a+N=\bar{f}, e a=a e=0$ and I is the closed principal right ideal generated by $a^{2}-a$. Partially order this collection by set inclusion. By linear compactness there is a maximal element, $f+I$ say. Suppose $f^{2}-f \neq 0$. It follows from $(1-2 f)^{2}=1+4\left(f^{2}-f\right) \equiv 1(\bmod N)$, that $(1-2 f)$ has an inverse. ${ }^{2}$ Let $n=\left(f^{2}-f\right)(1-2 f)^{-1}, n \in I$, and let I^{\prime} be the closure of $n I$. Then $f^{\prime}+I^{\prime}>f+I$, where $f^{\prime}=f+n$. This contradicts the maximality of $f+I$.

[^2]Theorem 3. Let A be a linearly compact algebra over a field K with ideal neighborhoods of zero, and let N be its radical. Then [3, Theorem 1] A / N is algebraically and topologically isomorphic to a complete direct sum of discrete simple rings with minimal condition. Suppose that the summands are countable in number and that each summand is a total matrix algebra over K. Then there is a closed subalgebra S such that $A=S \oplus N$.

Proof. We need only consider one summand. Then we follow the proof of [4, Theorem C, p. 320] summing up the semi-simple parts to get the subalgebra S. Let, therefore, A / N be a total matrix algebra over K and $\bar{e}_{i j}(i, j=1,2, \cdots, n)$ be a set of matrix units of A / N. The theorem will be established if we can raise $\bar{e}_{i j}$ to a set of matrix units $e_{i j}$ of A. By Lemma 2 we can find all the diagonal elements $e_{i i}$. It remains to find $e_{i j}(i \neq j)$. It suffices to find all the $e_{i 1}$ matching a given set of representatives $e_{1 i}(i=2, \cdots, n)$, where $e_{1 i}=e_{11} e_{1 i}=e_{1 i} e_{i i}$. Then put $e_{i j}=e_{i 1} e_{1 j}$.

We construct, for instance, e_{21} as follows. If a is any representative of \bar{e}_{21} such that $a=e_{22} a=a e_{11}$, and if $a e_{12}=e_{22}$ then $e_{12} a=e_{11}$, for $e_{11}-e_{12} a$ is an idempotent in N. Consider the collection $a+I$, where a is a representative of \bar{e}_{21} with $a=e_{22} a=a e_{11}$ and I is a closed right ideal containing $e_{22}-a e_{12}$. Partially order this collection by set inclusion. By linear compactness there is a maximal element $e_{21}+I$. We wish to show $e_{21} e_{12}=e_{22}$. Suppose $e_{22}-e_{21} e_{12}=n \neq 0$. Then $e_{21}^{\prime}+(n I)^{-}>e_{21}+I$, where $e_{21}^{\prime}=2 e_{21}-e_{21} e_{12} e_{21}$, contradicting the maximality of $e_{21}+I$.

Let S be the total matrix algebra generated by $e_{i j}$. Since N is the unique maximal ideal, S is closed. We have $A=S \oplus N$.

Bibliography

1. C. Feldman, The Wedderburn principal theorem in Banach algebras, Proc. Amer. Math. Soc. vol. 2 (1951) pp. 771-777.
2. N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. vol. 67 (1945) pp. 300-320.
3. D. Zelinsky, Linear compact modules and rings, Amer. J. Math. vol. 75 (1953) pp. 79-90.
4. ——, Raising idempotents, Duke Math. J. vol. 21 (1954) pp. 315-323.

Illinois Institute of Technology

[^0]: Received by the editors November 19, 1954 and, in revised form, November 10, 1955.

[^1]: ${ }^{1}$ This was suggested to us by Professor Zelinsky.

[^2]: ${ }^{2}$ The formal use of 1 is permissible, since it appears only in products with elements of A.

