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Let A be a linearly compact ring with ideal neighborhoods of zero,

and let N be its radical. Zelinsky shows that [3, Theorem l] A/N is

algebraically and topologically isomorphic to a complete direct sum

(i.e., a cartesian product) of discrete simple rings with minimum

condition. In case A is commutative, then [3, Theorem 2] A is alge-

braically and topologically isomorphic to a complete direct sum of a

radical ring and primary rings with units, all the summands being

linearly compact. If A is an algebra and the closure of powers of N

has zero intersection, he then shows [4, Theorem C, p. 320] that A

(having the usual properties) satisfies the Wedderburn principal

theorem. The restriction of N is needed at two stages: raising of

orthogonal idempotents of A/N to orthogonal idempotents of A,

and the inductive process of producing the semi-simple part. We pro-

pose to show that, if A is commutative, the Wedderburn principal

theorem is valid without restriction on N. The problem of raising

orthogonal idempotents no longer exists, for idempotents which are

orthogonal modulo N are already orthogonal; indeed to each idem-

potent in A/N there is only one idempotent representative in A. By

[3, Theorem 2] we can restrict ourselves to primary algebras. Then

A/N is a field and we may avail ourselves of the results of field theory

to construct the semi-simple part. Our main tool (Lemma 1) is a re-

sult of Jacobson [2, Theorem 6]. It also follows easily from this that

we can raise a countable number of idempotents with no restriction

on the radical. We use the terminology of [3].

The author wishes to acknowledge his thanks to Professor Zelinsky

for his many valuable comments.

1. We need the following result which is a slight modification of

[2, Theorem 6] to topological rings with ideal neighborhoods of zero.

Its proof is effectively the same as that of [2, Theorem 6].

Lemma 1. Let A be a topological ring with ideal neighborhoods of zero.

Let I be a closed subring contained in the radical of A. Then, for each

aEI, a = 0 if the closure of ai is I.

Let A be a linearly compact commutative primary algebra with
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unit over a field K. Then A /N is a field extension of K. Every element

u not in the radical has an inverse, for it has an inverse v modulo N

and uv has an inverse by the definition of the radical. We assume that

A/N is separable over K, i.e., there is a transcendence base (a»);6j

such that A/N is separably algebraic over K((ai)iBi).

Theorem 1. Let A be a linearly compact commutative primary alge-

bra with unit over a field K, and let N be its radical. Suppose A/N is

separable over K. Then A = 5© N, where S is a closed subalgebra iso-

morphic to A/N.

Proof. Let (a,)<sr be a transcendence base of A/N over K, and let

(ai)iei be a set of representatives in A. Then no polynomials in

(ai)ier with coefficients in K will take values in N. Hence, A contains

the field F generated by (ai)iei over K, and A may be considered as

an algebra over F. Therefore, we may assume that A/N is separably

algebraic over K.

First consider the case that A/N is finite over K. Then A/N = K(6)

for some element 6EA/N. Let a be a representative of 6. Denote by

K[a] the polynomial ring in a. K[a] will be the desired algebra if

f(a) =0, where / is the minimal polynomial of 6. We find such an a

as follows. Consider the collection of all subvarieties a+ 7, where a

is a representative of 6 and 7 is a closed ideal containing/(a). Partially

order this collection by set inclusion: a-f-7>a'+7' if and only if

a+7Ca'-r-7'. Because of linear compactness, every linearly ordered

subset of this collection has a least upper bound. Hence there is a

maximal element, a+7 say. We claim f(a) =0. Suppose f(a) =n9*0.

Since A/N is separably algebraic over K,f'(a)f^0 (mod N), where/'

denotes the formal derivative of/. Let b be the inverse of/'(a) and

a' = a-bn. Then f(a')=f(a-bn)=f(a)-f'(a)bn = 0 (mod nl). By

Lemma 1, a'+7'>a-f-7, where 7' is the closure of nl. This contradicts

the maximality of a+7.

In general, let S be a maximal subfield contained in A. If A/N9*S

then we may extend 5toa field S(a) by above paragraph. Hence

A =S@N. Since N is the unique maximal ideal of A, 5 is a closed

subalgebra of A.

Remarks. (1) The subfield 5 is unique if it is algebraic over K.1

Suppose A =S®N=S'®N. Take an sES, s = s'+n with s'ES' and

nEN. Let / be the minimal polynomial of s+N = s'+N. Then

0=f(s)=f(s'+n)=f(s')+f(s')n+ ■ ■ ■. Since f(s')=0 and f'(s')9*0,
n = 0 by Lemma 1. It is clear that if A /N is not algebraic over K then

S is no longer unique.

1 This was suggested to us by Professor Zelinsky.
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(2) If ^4 is a primary ring with unit and of characteristic zero (i.e.,

kx = 0 implies x = 0, where k is any positive integer), then Theorem 1

is still valid. For in this case A can be considered as an algebra over

the field of rational numbers.

(3) If A/N is finite over K, the commutativity of A enters only in

A/N; when we deal with A we only consider elements of the form

a>/(°)>/'(<*)> • • • • If only the commutativity of A/N is assumed, we

do not know whether 5 is still unique.

Theorem 1 together with [3, Theorem 2] yields:

Theorem 2. Let A be a linearly compact commutative algebra over a

field K, with ideal neighborhoods of zero. Then [3, Theorem 2] A is

algebraically and topologically a complete direct sum of primary algebras

with unit and a radical algebra, each summand being linearly compact.

Suppose that the quotient algebra of each primary summand over its

radical is separable over K. Then A contains a closed subalgebra S such

that A=S@N (vector space direct sum), where N is the radical of A.

Moreover, S is unique if each quotient algebra is algebraic over K.

2. The condition that the intersection of powers of N be zero enters

into the task of raising idempotents only when we want to raise any

number of them. If we are willing to restrict ourselves to a countable

number of idempotents then linear compactness alone will do, as is

shown in the following lemma. From this we get an analogue of [l,

Theorem 1].

Lemma 2. Let A be a linear compact ring with ideal neighborhoods of

zero, and N its radical. Then a countable number of orthogonal idempo-

tents can be raised to orthogonal idempotents in A.

Proof. It suffices to consider two idempotents e, f in A/N, ef=0.

Let e be an idempotent in A representing e. If a is a representative of

/, then b = a — ea— ae+eae is also a representative, and eb = be = 0. Let

I be the closed principal right ideal generated by n = b2 — b. Since

eb = 0, el = 0. Consider the collection of subvarieties a+7, where

a-\-N=f, ea = ae = 0 and / is the closed principal right ideal generated

by a2 —a. Partially order this collection by set inclusion. By linear

compactness there is a maximal element,/+/ say. Suppose/2—/^0.

It follows from (1 -2/)2 = l+4(f-f) = l (mod N), that (1-2/) has
an inverse.2 Let m = (/2—/)(1—2/)_1, nEI, and let /' be the closure

of nl. Then/'+/'>/+/, where f'=f+n. This contradicts the maxi-

mally of/+/.

2 The formal use of 1 is permissible, since it appears only in products with elements

of A.
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Theorem 3. Let A be a linearly compact algebra over a field K with

ideal neighborhoods of zero, and let N be its radical. Then [3, Theorem

1 ] A/N is algebraically and topologically isomorphic to a complete direct

sum of discrete simple rings with minimal condition. Suppose that the

summands are countable in number and that each summand is a total

matrix algebra over K. Then there is a closed subalgebra S such that

A=S®N.

Proof. We need only consider one summand. Then we follow the

proof of [4, Theorem C, p. 320] summing up the semi-simple parts

to get the subalgebra S. Let, therefore, A/N be a total matrix algebra

over K and e,j (i, j= 1, 2, • • • , n) be a set of matrix units of A/N.

The theorem will be established if we can raise iy to a set of matrix

units e.y of A. By Lemma 2 we can find all the diagonal elements en.

It remains to find e.y (i9*j). It suffices to find all the en matching a

given set of representatives en (i = 2, • • ■ , n), where Ci. = CiiCi« = ei,c,-,-.

Then put Cy = «««»•

We construct, for instance, e2i as follows. If a is any representative

of e2i such that a = e22a = aeu, and if aei2 = e22 then eua = en, for en — ei2a

is an idempotent in N. Consider the collection a+7, where a is a

representative of en with a = e22a = aen and 7 is a closed right ideal

containing e22 — aei2. Partially order this collection by set inclusion.

By linear compactness there is a maximal element e2i+I. We wish

to show e2ien = e22. Suppose e22 — e2iei2 = n9*0. Then e2l + (nl)~>e2i+l,

where e2l = 2e2i — e2iei2e2i, contradicting the maximality of e2i+7.

Let S be the total matrix algebra generated by efj. Since N is the

unique maximal ideal, S is closed. We have A =S®N.
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