NOTES ON LINEARLY COMPACT ALGEBRAS
TI YEN

Let A be a linearly compact ring with ideal neighborhoods of zero,
and let N be its radical. Zelinsky shows that [3, Theorem 1] A/N is
algebraically and topologically isomorphic to a complete direct sum
(i.e., a cartesian product) of discrete simple rings with minimum
condition. In case 4 is commutative, then [3, Theorem 2] 4 is alge-
braically and topologically isomorphic to a complete direct sum of a
radical ring and primary rings with units, all the summands being
linearly compact. If 4 is an algebra and the closure of powers of N
has zero intersection, he then shows [4, Theorem C, p. 320] that 4
(having the usual properties) satisfies the Wedderburn principal
theorem. The restriction of NV is needed at two stages: raising of
orthogonal idempotents of A/N to orthogonal idempotents of 4,
and the inductive process of producing the semi-simple part. We pro-
pose to show that, if 4 is commutative, the Wedderburn principal
theorem is valid without restriction on N. The problem of raising
orthogonal idempotents no longer exists, for idempotents which are
orthogonal modulo N are already orthogonal; indeed to each idem-
potent in A /N there is only one idempotent representative in 4. By
[3, Theorem 2] we can restrict ourselves to primary algebras. Then
A/N is a field and we may avail ourselves of the results of field theory
to construct the semi-simple part. Our main tool (Lemma 1) is a re-
sult of Jacobson [2, Theorem 6]. It also follows easily from this that
we can raise a countable number of idempotents with no restriction
on the radical. We use the terminology of [3].

The author wishes to acknowledge his thanks to Professor Zelinsky
for his many valuable comments.

1. We need the following result which is a slight modification of
[2, Theorem 6] to topological rings with ideal neighborhoods of zero.
Its proof is effectively the same as that of [2, Theorem 6].

LEMMA 1. Let A be a topological ring with 1deal neighborhoods of zero.
Let I be a closed subring contained in the radical of A. Then, for each
a€&I, a=0 if the closure of al is I.

Let 4 be a linearly compact commutative primary algebra with
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unit over a field K. Then 4 /N is a field extension of K. Every element
u# not in the radical has an inverse, for it has an inverse ¥ modulo N
and uv has an inverse by the definition of the radical. We assume that
A/N is separable over K, i.e., there is a transcendence base (o)er
such that A/N is separably algebraic over K((ay)er).

THEOREM 1. Let A be a linearly compact commutative primary alge-
bra with unit over a field K, and let N be its radical. Suppose A/N 1is
separable over K. Then A=S®N, where S is a closed subalgebra iso-
morphic to A/N.

ProoF. Let (a;):cr be a transcendence base of 4/N over K, and let
(a:)ier be a set of representatives in 4. Then no polynomials in
(a:)ier with coefficients in K will take values in N. Hence, 4 contains
the field F generated by (a:):cr over K, and 4 may be considered as
an algebra over F. Therefore, we may assume that A/N is separably
algebraic over K.

First consider the case that 4 /N is finite over K. Then 4/N =K (f)
for some element §cA/N. Let a be a representative of §. Denote by
K [a] the polynomial ring in a. K[a] will be the desired algebra if
f(a) =0, where f is the minimal polynomial of 8. We find such an a
as follows. Consider the collection of all subvarieties a1, where a
is a representative of 6 and I is a closed ideal containing f(a). Partially
order this collection by set inclusion: a+I>a’+I’ if and only if
a-+I1Ca’+1I'. Because of linear compactness, every linearly ordered
subset of this collection has a least upper bound. Hence there is a
maximal element, a+1 say. We claim f(a) =0. Suppose f(a) =7 0.
Since 4/N is separably algebraic over K, f'(a) #0 (mod N), where f’
denotes the formal derivative of f. Let & be the inverse of f'(a) and
a’=a—bn. Then f(a’)=f(a—bn)=f(a)—f (a)bn=0 (mod nI). By
Lemma 1, a’+1'>a-+1I, where I’ is the closure of #I. This contradicts
the maximality of a+1.

In general, let S be a maximal subfield contained in 4. If A/N#=S
then we may extend S to a field S(a) by above paragraph. Hence
A=S®N. Since N is the unique maximal ideal of 4, S is a closed
subalgebra of 4.

REMARKS. (1) The subfield S is unique if it is algebraic over K.!
Suppose A =SHN=S"@®N. Take an sES, s=s"+n with s'€S’ and
n&N. Let f be the minimal polynomial of s4+N=s'+N. Then
0=1(s) =f(s"+n) =f(s") +f'(s)n+ - - -. Since f(s') =0 and f'(s") =0,
n=0 by Lemma 1. It is clear that if A/N is not algebraic over K then
S is no longer unique.

! This was suggested to us by Professor Zelinsky.
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(2) If 4 is a primary ring with unit and of characteristic zero (i.e.,
kx =0 implies x =0, where k is any positive integer), then Theorem 1
is still valid. For in this case 4 can be considered as an algebra over
the field of rational numbers.

(3) If A/N is finite over K, the commutativity of 4 enters only in
A/N; when we deal with A we only consider elements of the form
a, f(a), f'(a), - - - . If only the commutativity of 4/N is assumed, we
do not know whether S is still unique.

Theorem 1 together with [3, Theorem 2] yields:

THEOREM 2. Let A be a linearly compact commutative algebra over a
field K, with ideal neighborhoods of zero. Then [3, Theorem 2] A is
algebraically and topologically a complete direct sum of primary algebras
with unit and a radical algebra, each summand being linearly compact.
Suppose that the quotient algebra of each primary summand over its
radical is separable over K. Then A contains a closed subalgebra S such
that A =S® N (vector space direct sum), where N 1is the radical of A.
Moreover, S is unique if each quotient algebra s algebraic over K.

2. The condition that the intersection of powers of IV be zero enters
into the task of raising idempotents only when we want to raise any
number of them. If we are willing to restrict ourselves to a countable
number of idempotents then linear compactness alone will do, as is
shown in the following lemma. From this we get an analogue of [1,
Theorem 1].

LEMMA 2. Let A be a linear compact ring with ideal neighborhoods of
zero, and N its radical. Then a countable number of orthogonal idempo-
tents can be raised to orthogonal idempotents in A.

PRrooF. It suffices to consider two idempotents ¢é, f in A/N, &f =0.
Let e be an idempotent in 4 representing é. If a is a representative of
f, then b=a —ea —ae-+eae is also a representative, and eb=be=0. Let
I be the closed principal right ideal generated by n=5%—b. Since
eb=0, eI =0. Consider the collection of subvarieties a+I, where
a+N=f, ea=ae=0 and I is the closed principal right ideal generated
by a%—a. Partially order this collection by set inclusion. By linear
compactness there is a maximal element, f+ I say. Suppose f2—f=0.
It follows from (1—2f)2=14+4(f?—f)=1 (mod N), that (1 —2f) has
an inverse.? Let n=(f*—f)(1—2f)"!, n€1, and let I’ be the closure
of nI. Then f'+1I'>f+1, where f'=f+n. This contradicts the maxi-
mality of f+1.

2 The formal use of 1 is permissible, since it appears only in products with elements
of 4.
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THEOREM 3. Let A be a linearly compact algebra over a field K with
ideal neighborhoods of zero, and let N be its radical. Then [3, Theorem
1] A/ N is algebraically and topologically isomorphic to a complete direct
sum of discrete simple rings with minimal condition. Suppose that the
summands are countable in number and that each summand is a total
matrix algebra over K. Then there 1s a closed subalgebra S such that
A=S@®N.

Proor. We need only consider one summand. Then we follow the
proof of [4, Theorem C, p. 320] summing up the semi-simple parts
to get the subalgebra S. Let, therefore, 4 /N be a total matrix algebra
over K and é;; (¢, j=1, 2, - - -, n) be a set of matrix units of A/N.
The theorem will be established if we can raise €;; to a set of matrix
units e;; of 4. By Lemma 2 we can find all the diagonal elements e;;.
It remains to find e;; (¢77). It suffices to find all the e;; matching a
given set of representatives e;; (=2, + - - , n), where e1; =enei; = erie4.
Then put e;;=eaey;.

We construct, for instance, ey as follows. If a is any representative
of &y such that @ =ena =aey, and if ae;; =e3 then epa =ey, for ey —ena
is an idempotent in N. Consider the collection a+1, where ¢ is a
representative of €y with a =ena=aen and I is a closed right ideal
containing e —aey,. Partially order this collection by set inclusion.
By linear compactness there is a maximal element e;+1. We wish
to show ene1s =e22. Suppose e —eners=n7#0. Then e3+(nI)~>en+1,
where ¢}, = 22 — ene1221, contradicting the maximality of ey 1.

Let S be the total matrix algebra generated by e;;. Since N is the
unique maximal ideal, S is closed. We have A =S@ N.
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