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In the theory of topological algebras, it is well-known that a com-

pact totally disconnected group (or a compact totally disconnected

ring) is a projective limit of finite groups (or finite rings). In §2 of

this paper we shall establish a theorem on compact totally discon-

nected Hausdorff semigroups which is similar to that for compact

totally disconnected groups.

The theorem can be applied to other compact totally disconnected

algebraic systems. For example, it can be applied to compact totally

disconnected rings, compact totally disconnected distributive lat-

tices, etc.

In §3, we shall prove an imbedding theorem for compact totally

disconnected distributive lattices which is well-known in the discrete

case [l].2

Throughout the paper we will use the terminology of Wallace

[3; 4] and [5]. Thus a mob S is a Hausdorff space together with a

continuous associative multiplication. A ES is a T-ideal, where T

is a nonvacuous subset of S, if and only if TA EA and A TEA. More-

over, a topological lattice L is a Hausdorff space together with a pair

of continuous functions A-LXL—>L, V: LXL—+L satisfying the

usual conditions for lattice operations.

The author wishes to acknowledge the advice and helpful sugges-

tions of Professor A. D. Wallace in the preparation of this paper.

1. Let .S be a topological space and A the diagonal of the product

space SXS: A = {(x, x); xES}.

Let 5K be a subset of SXS.

(1) 9t is called reflexive if SOA.
Let us denote by a a map from SXS into itself defined by o(x, y)

= (y, x) for (x, y)ESXS. Then a is a homeomorphism from SXS

onto itself and a2 is the identical map.

(2) 9? is called symmetric if <r(3i) = 'St.

Let SRi, 9f2 be two subsets of SXS. We define a subset 9ti o 3t2 of

SXS as follows: (x, y)E?Hi o 9t2 if and only if there exists an element

z in 5 with (x, z)G9fi and (z, y)E$tz-

(3) 9? is called transitive if 3v o 9tC5R.
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If 9x is a subset of SXS which is reflexive, symmetric and transi-

tive, then we can define an equivalence relation with respect to dt in

S by

x = y mod dt if and only if (x, y) E dt.

Let us denote by S/dt the set of equivalence classes with respect

to dt. Define the natural map f: S^>S/dt by f(x) = "the equivalence

class mod dt containing x." Topologize S/dt as usual, i.e. a subset

V* of S/dt is open if and only if/_1(F*) is open in S, so S/dt is a

topological space and / is a continuous map from 5 onto S/dt.

Now we can easily get the following:

Lemma 1. Let S be a compact Hausdorff space and dt an open sub-

set of SXS which is reflexive, symmetric and transitive. Then S/dt is a

finite discrete space.

Lemma 2. Let S be a compact, totally disconnected Hausdorff space

and £> an open subset of SXS containing the diagonal A. Then there

exists, in £), an open subset dt of SXS which is reflexive, symmetric

and transitive.

Proof. Since 5 is a compact totally disconnected Hausdorff space,

we can find a finite number of open and closed subsets Vi, • ■ ■ , Vk

in S such that

k

ACU^X V) c o.
»—1

Let Ui= Vi and Ut= Vi\(ViVJ ■ ■ ■ \J F,_i) for i = 2, 3, ■ ■ ■ , k. Then
Ui, ■ ■ ■ , Uk are open subsets of 5 with J/<r>\C7y=n for i-^j and

ACUf,! (UiX Ui)C£)- Let «R = Uf_, (t/.-X Ui), then dt is the open sub-
set of SXS which we wanted.

2. We are going to consider a compact mob 51 instead of a space .S.

The product space 5X5 is also a compact mob with the component-

wise product.

Lemma 3. Let S be a compact mob and 21 an open submob of SXS

which is reflexive, symmetric and transitive. Then 5/21 is a finite, dis-

crete mob.

Proof. By Lemma 1, 5/21 is finite and discrete. Let a*, b* be two

elements of 5/21 and let a* =/(a), b* =f(b), where/ is the natural map

from 5 onto 5/21 and a, b are elements of 5. Define the product of

a* and b* by a*b*=f(ab). Then this product is uniquely defined. In

fact, if a*=f(a') and b*=f(b'), a', b'ES, then (a, a')G21 and (b, b')
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£21. Since 21 is a submob of SXS, we get (ab, a'6')£2l, whence

f(ab)=f(a'b'). Now, associativity of the multiplication can easily be

proved. Thus 5/21 is a finite, discrete mob.

In this case, we call the natural map / the natural homomorphism.

Lemma 4. Let S be a compact totally disconnected mob and O an open

subset of SXS containing the diagonal A. Then there exists, in £), an

open submob 21 of SXS which is reflexive, symmetric and transitive.

Proof. Let 9i be an open, reflexive, symmetric and transitive sub-

set of SXS in £> (see Lemma 2). We denote by 21 the union of all

A-ideals contained in 9i, that is the largest A-ideal in 3i. Then, by

the same proof as that of Lemma 1 of [2], 21 is open. A itself is a

A-ideal contained in di, so AC21, i.e. 21 is reflexive.

Since 9J is symmetric, cr(2l)C9i and <r(2t) is also a A-ideal. There-

fore o-(2I)C2l, and <r(2l) must be equal to 21, that is, 21 is symmetric.

To prove the transitivity of 21, pick an element (x, y) from 21 o 21.

Then there exists an element z in 5 with (x, z)£2IC3? and (z, y)

£2IC9i- So (x, y)£9to9iC9i, because 3t is transitive. Hence

21 o 21 C9i. On the other hand it can readily be seen that 21 o 21 is a

A-ideal. Thus 21 o 21C21, namely 21 is transitive.

Now we shall show that 21 is a submob of SXS. Let (x, y) and

(x', y') be two elements of 21. Then, since 21 is a A-ideal, we have

(xx', yx')£2I and (yx', yy')£2I. From the transitivity of 21 we get

(xx', yy') £21. Hence 21 is a submob of SXS.

Theorem 1. A compact totally disconnected mob is a projective limit

of finite discrete mobs.

Proof. Let S be a compact totally disconnected mob and A the di-

agonal of SXS. Then, by Lemma 4, we can find a family 5= {2L;

X£A} of open, reflexive, symmetric and transitive submobs of SXS

with (1°) nXeA2Ix=A and (2°) for any two members Six, 2l„ of g there

exists a third member 21, such that 2LC2tx^2l„.

Let S\ = S/$i\ then, by Lemma 3, each Sx is a finite discrete mob.

For X, uEA, define \>u by 2lxC2I^, then A becomes a directed set

and it can readily be seen that for \>u there is an (open continuous)

homomorphism/£: Sx-^S? with fifl =f) if\>u>v. Thus 5 is a projec-

tive limit of finite discrete mobs S\'s.

3. Let L be a topological lattice. Then L is a mob with respect to

the join operation and also with respect to the meet operation.

Lemma 5. If L is a compact totally disconnected distributive lattice

and I0 is the lattice {0, 1} then for x, y£L and xi*y there is a continu-

ous homomorphism f: L—>I0 such that f(x) 9*f(y).
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Proof. Since x^y the element (x, y) of the product space LXL is

not contained in the diagonal Al Then, by Lemma 4, there exists an

open, reflexive, symmetric and transitive submob 21 with respect to

the join operation.

Next, take the largest A-ideal 50? contained in 21 (i.e. the union of

all A-ideals contained in 21) with respect to the meet operation. Then,

using the distributivity of L, we can easily prove that dfl is an open,

reflexive, symmetric and transitive subset of LXL which is closed

under join and meet operations. Moreover, the element (x, y) is not

contained in dfl. Then, by a similar proof to that of Lemma 3, we can

conclude that L/dR is a finite discrete distributive lattice and there

is the natural homomorphism g: L^L/dJl such that g(x)^g(y).

Since L/dfl is a finite discrete distributive lattice we can find a

(continuous) homomorphism h: L/dJl—>i"o such that hg(x) 9^hg(y) (see

[l]). Let f=hg. Then/ is a continuous homomorphism from L onto

Io which is just what we wanted.

Theorem 2. A compact totally disconnected distributive lattice can be

imbedded (algebraically and topologically) in a compact Boolean lattice.

Proof. Let L be a compact totally disconnected distributive lattice

and Jo the lattice {0, 1}.

We denote by H(L, I0) the set of all continuous homomorphisms of

L into Io and by B(L) the set of all functions from H(L, I0) to Jo-

Then B(L) is a compact Boolean lattice (the cartesian product of Jo

with itself one time for each element of H(L, Io)).

Define a function <j>: L—*B(L) by <f>(x)(a) =a(x), where xEL,

aEH(L, Io). Then, using Lemma 5, it can readily be seen that <j> is

a topological isomorphism of L into B(L). Thus L can be imbedded

in the compact Boolean lattice B(L).

One may prove that a compact totally disconnected distributive

lattice is a projective limit of finite discrete distributive lattices. This

is an immediate consequence of Theorem 1 and the proof of Lemma 5.
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