
LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS
SATISFYING CONDITIONS AT MORE THAN

ONE POINT1

TOMLINSON FORT

1. Introduction. The problem of differential equations satisfying

conditions at more than one point is not new. W. M. Whyburn2 has

given an extensive bibliography to which the reader is referred. In

the present paper sufficient conditions on the coefficients are given

that a solution of a system of linear equations exist consisting of a

set of functions some of which take on prescribed values at one point

and others at other points. The reader is referred to Theorems II

and I for precise statements. The approach to differential equations is

through difference equations. It is realized that most mathematicians

will probably regard the differential equations as the more inter-

esting. However, the author regards difference equations as of inter-

est in themselves and Theorem I as of equal interest with Theorem II.

In a way it is more fundamental since, as in many other places, the

facts for the differential equations are inferred from those for differ-

ence equations.

2. The difference equation. Consider the system of difference equa-

tions
n

(1) y,(i + 1) = 2~1 <^n(i)y^(i), v = 1, ■ ■ ■ ,n.
/i=i

Here i is limited to integral values and the coefficients a„„(i) are de-

fined when

(2) 0 ^ i < b.

There is no gain in generality if (2) is replaced by

agi<b.

By a solution of (1) we shall mean a set of functions y,(i) which

satisfy (1) at all points of (2). It is well known and immediately

proved that there exists one and only one solution of (1) having arbi-

trary prescribed values at 0.
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Suppose we are given an integer a, where 0 = a <b. Begin with yv(a)

and calculate successively yi<(a + l), yv(a + 2), • • ■ , yv (k) by means of

(1), v = l,2, ■ • • ,n. Then let

n

(3) y,(k) = E A,a(a, k)ya(a),
c=i

(4) D,(k, a, fi) = det. aapBq(k), p, q = 1, • • • , v,

(5) H,(a, k, a, fi) = det. Aajq(a, k), p, q = 1, • • • , v,

m

(6) (at, 8s, fi, y, m) = E <*«ti3„(*)^Wa> k)>
n-1

in

(6') (at, Se, m) = E ^(^^(a, A),
H=l

(7) A,(a, ^, a, /3, y, S) = det. («„, Sq,fi,y,v), p, q = 1, ■ • • , v

= D,(k,a,fi)H,(a,k,y,S).

Lemma.   Hypothesis.   Dv(k,   a,   fi)>0   whenever   a = k<c   and

ai<a2<  ■ ■ ■  <av,fii<fi2< • ■ ■  <fiv.

Conclusion :

(8) H,(a, c, y, 8) > 0 whenever 71 < 72 < • • • < y„ S\ < 82 < • ■ • < 5„.

Proof is by means of mathematical induction.

To begin with

H,(a, a + 1, a, fi) = D,(a, a, fi) > 0.

This is the first step in the induction.

We shall next prove that

(9) H,(a,k+l,a,fi)=     V     Dy(k, a, v)Hv(a, k, v, fi)
11. • • -.i»

where  the  summation  is  taken  for all  possible  combinations of

Iii fii * • • »ij» subject to the restrictions r]i<r]t< ■ • •   <r\v.

Proof is by straightforward verification.

From (3) we have

n

yr(k + 1) = E A,u(a, k + l)yM(a).
K-l

Moreover
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V

yv(k + 1) = 2~2 a„„(k)yu(k)
x-i

n n

= 2 av»(k) H 4„„(a, k)yp(a)
H=l p=l

n       n

= Jl2~l a^fyA^a, k)y„(a)
n=i P=i

n    r~    n —I

= Z)    £ a^(k)A„D(a, k)   yp(a).
P=i L ^=i J

Equating coefficients we have

n

(10) Av„(a, k + 1) = 2~L am(k)Aup(a, k) = (v, p, n).
e=i

As a consequence of this and (5)

(11) Ht(a, k + 1, a, p) = det. (ap, Pq, n), p, q = 1, • • • , n.

Note that although the determinant is of order v each element is

the sum of n terms. We expand this determinant into n" determinants

by columns thus

(12) Hr(a, k + 1, a, p) =     X)      det. aapVq(k)AVq8q(a, k),
ii. ••••ip

P,q=l,---,v

Here the summation is extended to all possible combinations of

771,772, ■ ■ • , J?*, subject only to the restrictions 0<r)j^n, j = 1, • • • , v.

We denote the determinants in (12) by

(13) »(,!, • • • , r,r).

We note that if any two 77's are the same SD = 0. This is true since 3D

is then a determinant with two columns proportional. There remain

n(n — 1) • • • (n—v + l)=P. determinants. We denote these by

On • • • i 2Dp- In general O.-^O,- if i?*j. We note from (7) that

(14) 2     Dv(k,a,p)Hr(a,k,r,,p)=     £    Ay(a, k, a, V, V, p).

We now expand all determinants in the right hand member of (14)

also by columns. Each of the determinants 2Di, • • ■ , SDp occurs once

and only once. Other determinants which occur in the expansion are

zero having two columns proportional as explained above. We thus

establish formula (9). Induction is now immediate and the lemma is

proved.
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Theorem I. Let 0 = &0<&i< • ■ ■ <kq-i^b and 0<pi< • • ■ <pq

= n be integers. Let Gi, • • • , Gn be arbitrary numbers. Suppose

D,(k, a, fi)>0 whenever ax<a2< ■ ■ • <a„, fii<fi2< ■ ■ • <fi„

kj-i = k<kj and v = n — pj, j = l, • • • , q — l. Then there exists one and

only one solution of (I) such that

yPi+i(kj) = Gpj+i,

* = li • • • i Pi+i - Pit j = o, • • •, q - 1, Po = 0, &o = o.

To prove this we first fix yi(0)=Gi, ■ • ■ , yn(kq)=Gn. With this

done we shall show that under the hypotheses of the theorem it is

possible to determine yi(0), y2(0), • • • , y„(0) in one and only one

way, hence to determine one and only one solution with the pre-

scribed values.

We write down (3) for v = pi + l, ■ • • , n and k = ki. We know by

the lemma that Hn-P1(0, ki, a, fi)>0. Hence we can solve for

ypl+i, (0), • • • , y„(0) in terms of yPl+i(ki), • ■ ■ , yn(ki). We note that

yvi+i(ki), • • • , yP2(ki) have known values namely GPl+i, • • ■ , GPr

We write

(15) y„(0) = /,   [Gu ■ ■ ■ , GP2, yP2+i(ki), ■ ■ ■ , yn(ki)],    v = 1, • • •, n.

We now write (3) for k = kt, a = ki, v = pt + l, ■ ■ ■ , n. We solve these

equations for yV2+i(ki), ■ ■ ■ , yn(ki) in terms of yP2+i(&2), ■ • ■ ,yn(kt).

We can do this since iT„_Ps(&i, kt, a, fi)>0 by the lemma. We sub-

stitute these values in (15) noting that

y3>2+i(&2) = GP2+i, • • • , yP3 = GPi.

We write

(2)

(16) y„(0) = /,   [Gi, • • • , GPl, yP3+i(k2), • • • , yn(k2)],    v = 1, • • • , n.

We solve for yP3+i(&2), • • • , yn(k2) in terms of ypa+i(&3), • • • , yn(k3)

and substitute in (16) getting

y,(0) = /,   [Gi, ■ • ■ , GPi, yPi+i(ki), • • ■ , yn(k3)],      v = 1, • • • , n.

We continue this process until we finally have

yr(0)=/,(*_1)[Gi, ••-,£„]

and the theorem is proved.

3. The differential equation. Consider the set of differential equa-

tions
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dv        ."
(17) — = 52 gw(x)y>, v = 1, ■ ■ ■ ,n

dx      ,^=1

where gru(x) are continuous.

0 ^ x g 1.

Assume /?>0. Let i?„„(x) =l+fegw(x) and RVil(x) =hgvli(x), VT^p.. Let

£>„(x; a, P) = det. J?arg„ r, s = 1, • • • , v

and assume ai<a2< • • • <ar; Pi<P2< ■ ■ • <P,.

Theorem II. Let 0 = fc0<&i< • ■ ■ <kt£l. Let 0<pi<p2< • ■ ■

<pq = n be integers and let Gi, G2, • ■ ■ , Gn be arbitrary numbers. Sup-

pose for  sufficiently  small  h Dn~Pi(x,  a,  P)>0  when  k}-i^x<kj,

j=l, ■ ■ • , n. Then there exists one and only one solution of (17) such

that

yPj+i = Gpf+i] po = 0, ko = 0,

i = 1, ■ ■ ■ , pj+i - pj]j = 0, ■ • • , q - 1.

Proof will be made to depend upon the corresponding theorem for

difference equations.

Assume x, so chosen that Xi/h = i a positive integer or zero. Let

K(i) = g,„(hi) = g>u(xi).

Consider the difference equations

1 "
(18) —Ayv(i)=Jlbm(i)yu(i), v = 1, - - • , n.

h „=i

We write these equations in the form

n

yy(i + 1) = X) <*m(i)%(i), v = 1, • • • , n
n-i

where avu(i) =Rva(xi) that is aPli(i) =hbvu(i), lit^v and

a„(i) = 1 + hb„(i).

We expect to consider (18) when h approaches 0. In place of hi we

have written x,-. We also write yr(i) or jv(xi) indiscriminately meaning

exactly the same thing in each instance. Let h be small. Mark the

points (x^ y,(xi)) in the Cartesian plane and connect them by straight

line segments. We then write y,(x) for the function defined by this

graph. It is well known3 that if a solution of (17) satisfying conditions

3 See, for example, Fort, Finite differences and difference equations in the real

domain, Clarendon Press, Oxford, 1948, p. 164.
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yi(0) =Ci, y2(0) =c2, ■ ■ ■ , yn(0) =cn is given and if a solution of (18)

is determined satisfying yi(0) =Ci(h), • ■ ■ , yn(0)=cn(h) and if

lim/,,o cv(h) =cv, v = l, • • • , n then linu..o 3v(x) =y^(x) uniformly in

x,0gx^l.

We now consider (18). Suppose that ki, • • • , kq-i are points x,-

respectively as near as possible to ki, ■ • ■ , kq-i. Then we determine

y(xi) so that at k[, • • ■ , k[-Y it satisfies the conditions imposed by

the theorem upon y(x) at ki, • ■ ■ , fe9_i. This entails the determina-

tion of yi(0), • • • , y»(0) as explained in the proof of the Theorem I.

The basic operation in each instance was Cramer's Rule for solving

linear algebraic equations. In each case both numerator and de-

nominator determinants approach limits and the limit of the de-

nominator is positive. These facts follow from the following consider-

ations. Formula (10) shows that Avp(kj-i, k) as functions of k with

fixed p=n — pj and kj-i satisfy (1) where v = l, • • ■ , n. The initial

conditions are A„(kj-i, kj-i) = 1 and Arp(kj-i, &y_i)=0 when pj^v.

Consequently when h approaches 0, Avp(kj_i, x/) approaches a limit.

Denominator determinants namely iJ„(&y_i, kj, a, fi) have each ele-

ment an A which approaches a limit. Consequently Hv(kj-\, kj, a, fi)

itself approaches a limit. As a matter of fact Hv(kj-i, k, a, fi) as func-

tions of k satisfy a set of equations (9) which are a precise analogue

of (1). Each of the ITs then has a limit which is a member of a solu-

tion of a set of linear differential equations with positive coefficients

and positive initial conditions. It is then positive as remarked. All

other operations used in obtaining yi(0), ■ ■ ■ , yn(0) are a finite num-

ber of additions and multiplications of functions which approach

limits. Hence yi(0), • • • , ^(O) approach yi(0), • • • , y„(0) and the

corresponding solution satisfies the conditions of the theorem, since

as we have remarked k'j—^kj, j = l, ■ ■ • , q — l.
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