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THE MULTIPLICATION PROBLEM FOR
DIRICHLET SERIES

J. P. TULL

E. Landau [l, §214] has given a theorem on the multiplication of

Dirichlet series to the effect that if a, P, p, t, are real numbers with

min (p, r)>max (a, P) and if 22a"£»s converges for cr>a, absolutely

for cr>p, 22c''"£nS converges for a>P, absoutely for o>t, then the

Dirichlet product of these two series converges for

or — aP
cj > - •

p + t — a — P

(If min (p, t) ^ max (a, P) then we have convergence for

cr>max (a, P).) H. Bohr [2, Theorem XIX] gave an example to

show that in the case a=/3 = 0, p=r = l the above conclusion cannot

be improved.

In this paper we shall use a variation of Bohr's example to give,

for each a, P, p, r with min (p, r)>max (a, P), two Dirichlet series

whose product has abscissa of convergence exactly

pr — aP

p + t — a — P

Thus we show that Landau's theorem is the best possible in all cases

(the trivial cases being handled similarly).

Bohr [2, Theorem XVII] defines a certain Dirichlet series 22amw_*

as follows. Let (an), (tn), (Pn), (jn) be sequences of positive integers

such that for all re^ 1
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a„  < tn  < fin  < yn  < «n+l>      an  <  Qn)112,     7n >   t„,

fin = tH   ",    where     lim 5„ = 0,      lim t„ " = 0.
n n

For example, we could take

t„ = 223",   Sn = 2-2",   fin = 223"+2",    a„ = 22""1 - 1,   yn = 223"+i + 1.

Let c be a given positive number and define Sm= E^-i ai by

0 for an fk m < fin,

(1) Sm = ■ m"'» for fin^m ^ yn,

1 for 7„ < m < an+i.

(In Bohr's original work c = l). Since |5m| ^1 for all m and the se-

quence (Sm) has no limit, it is clear that the series Ea»»w_s has con-

vergence abscissa 0. Thus the abscissa of absolute convergence is at

most 1, and so p(a) =0 for <r2:1, where p. is the Lindelof function for

f(s) — Ea"»W- Bohr shows for c = l, 0<cr<l, that p(a)^l — a. If

throughout Bohr's proof we replace tn by ctn we will find that for

0<o-0<l, as «—>oo,

(2) /((TO + tC<„)   =  - tn +  0(tn ).
(TO

(Hence, ju(o-) S: 1 — o- for 0<<r<l; actually, from  [l, §229], we can

show, with Bohr, that p(o) = 1 —a for 0<o-<l).

Now, given a<p, take c = (p—a)~1 and let

g(5) = /(-) = E a'r^m, ',    where    |J, = m       " ,    am = aJim.
\p — a/

Then for a<aa<p, since 0<(o-0— a)/(p— a) <l, by (2), as »—><*>

/<ro — a             tn   \
g(ao + tin) = /(-h t-1

(3) Vp_tt P_a/

t l_(,ro_a)/(p-a)(l+8„) l_(jc_a)/(p_„)(l+jnl

=  - tn +  0[t„ 1.
ao— a

Similarly, given fi<r, take c = (r—fi)~1 and let

Then for fi<o-0<T,
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(4)      A(cr0 + t*B) = - /» + Oj 4 } .

If max (a, /3)<cr0<min (p, r), then by (3) and (4), as re—>oo

, ,     ., .,, ,     .    x _1 2-l(»0-a)/(p-a)+((ro-/3)/(T-S)l(H-JB)
g(0-O + ttn)h((T0 + tin)   = "-—-T tn

(<70 — a)  (do — P)

,   2-((<r(r-a)/(p-a)+(<roHS)/(T-B)l(l+«B)1

+  0{tn \ .

Thus the Lindelof function for gh satisfies, since /„5n—>0,

(cr — a        cr — P)

ti*)H2-\-+- \p — a      t — PJ

in this interval, and so ju(cr) > 1 for

cr < (pr - aP)/(p + t - a- P).

Observe that

pr — ap
max (a, /3) <- < min (p, t).

p + r — a -p

Therefore, by [l, §229], the Dirichlet product of g and h cannot con-

verge if a<(pr —aP)/(p+r —a—P), and so the abscissa of conver-

gence is exactly (pr — a/3)/(p-f-r —a—/?).

Note that the above examples can also be applied to the case

min (p, t) ^max (a, P).
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