REFERENCES

- 1. P. Erdös and S. J. Taylor, On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences, Proc. London Math. Soc. (2) vol. 7 (1957) pp. 598-615.
- 2. C. S. Herz, The Bohr spectrum of bounded functions, Bull. Amer. Math. Soc. vol. 62 (1955) p. 76.
- 3. H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. vol. 77 (1915-1916) pp. 313-352.

CAMBRIDGE, ENGLAND

THE MULTIPLICATION PROBLEM FOR DIRICHLET SERIES

J. P. TULL

E. Landau [1, §214] has given a theorem on the multiplication of Dirichlet series to the effect that if α , β , ρ , τ , are real numbers with min $(\rho, \tau) > \max(\alpha, \beta)$ and if $\sum a_n \xi_n^{-s}$ converges for $\sigma > \alpha$, absolutely for $\sigma > \rho$, $\sum b_n \xi_n^{-s}$ converges for $\sigma > \beta$, absoutely for $\sigma > \tau$, then the Dirichlet product of these two series converges for

$$\sigma > \frac{\sigma \tau - \alpha \beta}{\sigma + \tau - \alpha - \beta}$$
.

(If min $(\rho, \tau) \leq \max(\alpha, \beta)$ then we have convergence for $\sigma > \max(\alpha, \beta)$.) H. Bohr [2, Theorem XIX] gave an example to show that in the case $\alpha = \beta = 0$, $\rho = \tau = 1$ the above conclusion cannot be improved.

In this paper we shall use a variation of Bohr's example to give, for each α , β , ρ , τ with min $(\rho, \tau) > \max(\alpha, \beta)$, two Dirichlet series whose product has abscissa of convergence exactly

$$\frac{\rho\tau-\alpha\beta}{\rho+\tau-\alpha-\beta}.$$

Thus we show that Landau's theorem is the best possible in all cases (the trivial cases being handled similarly).

Bohr [2, Theorem XVII] defines a certain Dirichlet series $\sum a_m m^{-s}$ as follows. Let (α_n) , (t_n) , (β_n) , (γ_n) be sequences of positive integers such that for all $n \ge 1$

Received by the editors September 16, 1957 and, in revised form, September 23, 1957.

$$\alpha_n < t_n < \beta_n < \gamma_n < \alpha_{n+1}, \quad \alpha_n < (t_n)^{1/2}, \quad \gamma_n > t_n^2,$$

$$\beta_n = t_n^{1+\delta_n}, \quad \text{where} \quad \lim_n \delta_n = 0, \quad \lim_n t_n^{-\delta_n} = 0.$$

For example, we could take

$$t_n = 2^{2^{3n}}, \quad \delta_n = 2^{-2n}, \quad \beta_n = 2^{2^{3n}+2^n}, \quad \alpha_n = 2^{2^{3n-1}} - 1, \quad \gamma_n = 2^{2^{3n+1}} + 1.$$

Let c be a given positive number and define $S_m = \sum_{j=1}^m a_j$ by

(1)
$$S_{m} = \begin{cases} 0 & \text{for } \alpha_{n} \leq m < \beta_{n}, \\ m^{ict_{n}} & \text{for } \beta_{n} \leq m \leq \gamma_{n}, \\ 1 & \text{for } \gamma_{n} < m < \alpha_{n+1}. \end{cases}$$

(In Bohr's original work c=1). Since $|S_m| \le 1$ for all m and the sequence (S_m) has no limit, it is clear that the series $\sum a_m m^{-s}$ has convergence abscissa 0. Thus the abscissa of absolute convergence is at most 1, and so $\mu(\sigma) = 0$ for $\sigma \ge 1$, where μ is the Lindelöf function for $f(s) = \sum a_m m^{-s}$. Bohr shows for c=1, $0 < \sigma < 1$, that $\mu(\sigma) \ge 1 - \sigma$. If throughout Bohr's proof we replace t_n by ct_n we will find that for $0 < \sigma_0 < 1$, as $n \to \infty$,

(2)
$$f(\sigma_0 + ict_n) = \frac{ic}{\sigma_0} t_n^{1 - \sigma_0(1 + \delta_n)} + o(t_n^{1 - \sigma_0(1 + \delta_n)}).$$

(Hence, $\mu(\sigma) \ge 1 - \sigma$ for $0 < \sigma < 1$; actually, from [1, §229], we can show, with Bohr, that $\mu(\sigma) = 1 - \sigma$ for $0 < \sigma < 1$).

Now, given $\alpha < \rho$, take $c = (\rho - \alpha)^{-1}$ and let

$$g(s) = f\left(\frac{s-\alpha}{\rho-\alpha}\right) = \sum a'_m \xi_m^{\prime-s}, \text{ where } \xi_m' = m^{1/(\rho-\alpha)}, a'_m = a_m \xi_m^{\prime\alpha}.$$

Then for $\alpha < \sigma_0 < \rho$, since $0 < (\sigma_0 - \alpha)/(\rho - \alpha) < 1$, by (2), as $n \to \infty$

(3)
$$g(\sigma_0 + it_n) = f\left(\frac{\sigma_0 - \alpha}{\rho - \alpha} + i\frac{t_n}{\rho - \alpha}\right) \\ = \frac{i}{\sigma_0 - \alpha} t_n^{1 - (\sigma_0 - \alpha)/(\rho - \alpha)(1 + \delta_n)} + o\left\{t_n^{1 - (\sigma_0 - \alpha)/(\rho - \alpha)(1 + \delta_n)}\right\}.$$

Similarly, given $\beta < \tau$, take $c = (\tau - \beta)^{-1}$ and let

$$h(s) = f\left(\frac{s-\beta}{\tau-\beta}\right).$$

Then for $\beta < \sigma_0 < \tau$,

(4)
$$h(\sigma_0 + it_n) = \frac{i}{\sigma_0 - \beta} t_n^{1 - (\sigma_0 - \beta)/(\tau - \beta)(1 + \delta_n)} + o\{t_n^{1 - (\sigma_0 - \beta)/(\tau - \beta)(1 + \delta_n)}\}.$$

If max $(\alpha, \beta) < \sigma_0 < \min(\rho, \tau)$, then by (3) and (4), as $n \to \infty$

$$g(\sigma_0 + it_n)h(\sigma_0 + it_n) = \frac{-1}{(\sigma_0 - \alpha)(\sigma_0 - \beta)} t_n^{2-[(\sigma_0 - \alpha)/(\rho - \alpha) + (\sigma_0 - \beta)/(\tau - \beta)](1+\delta_n)}$$

$$+ \left. o \left\{ t_n^{2-\left\{ \left. (\sigma_0-\alpha) \right. / \left. (\rho-\alpha) + \left. (\sigma_0-\beta) \right. / \left. (\tau-\beta) \right. \right\} \left. (1+\delta_n) \right. \right\} \right. .$$

Thus the Lindelöf function for gh satisfies, since $t_n^{-\delta n} \rightarrow 0$,

$$\mu(\sigma) \ge 2 - \left\{ \frac{\sigma - \alpha}{\rho - \alpha} + \frac{\sigma - \beta}{\tau - \beta} \right\}$$

in this interval, and so $\mu(\sigma) > 1$ for

$$\sigma < (\rho \tau - \alpha \beta)/(\rho + \tau - \alpha - \beta).$$

Observe that

$$\max (\alpha, \beta) < \frac{\rho \tau - \alpha \beta}{\rho + \tau - \alpha - \beta} < \min (\rho, \tau).$$

Therefore, by [1, §229], the Dirichlet product of g and h cannot converge if $\sigma < (\rho \tau - \alpha \beta)/(\rho + \tau - \alpha - \beta)$, and so the abscissa of convergence is exactly $(\rho \tau - \alpha \beta)/(\rho + \tau - \alpha - \beta)$.

Note that the above examples can also be applied to the case $\min (\rho, \tau) \leq \max (\alpha, \beta)$.

BIBLIOGRAPHY

- 1. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. II, Teubner, Leibzig, 1909.
- 2. H. Bohr, Bidrag til de Dirichlet'ske Raekkers Theori, Dissertation for the degree of Doctor of Philosophy, Copenhagen, 1910. Both the dissertation and an English translation appear in Bohr's Collected Mathematical Works, volumes I and III, respectively, Danish Mathematical Society, Copenhagen, 1952.

OHIO STATE UNIVERSITY