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1. Introduction. The standard formulas for polynomial interpola-

tion provide a representation for the (unique) polynomial y(x) of

degree n such that

y(x/) = yt, i = 0,1, ■ ■ ■ ,n,

where xt and yi are given, with the Xi distinct. (For a discussion of

these methods, cf. [l]). The present paper considers an extended

problem for which a polynomial of degree n — l approximates the

n + 1 values yt at x = Xi, respectively, with deviations from the given

values which are in prescribed ratios. Complete results are obtained

for this extended problem, with arbitrary, distinct X{.

The results are then applied to the two important special cases (1)

equally spaced points (2) a distribution of Xi determined by a

Chebychev approximation.

2. Statement of the problem. Let x», y»,X,-, (i = 0,1, • • ■ ,n) be given,

with the Xi distinct, throughout. We seek a polynomial y(x) of degree

n — l such that

(1) y(x,) = yt — \id, (i = 0, 1, ■ ■ ■ , n),

where d remains to be determined.

If we write

(2) y(x) = £ bX,

then the condition (1) becomes

n-l

(3) ^ bvXi + \id = y{, (i = 0, 1, • • • , n).
r=0

This is a system of n + 1 linear equations in the n + 1 quantities

b„ (v = 0, 1, • • • , n — l), and d. Let B denote the column vector con-

sisting of the by and ci; let W be the matrix of coefficients of these

quantities; and let Y denote the column vector of y's. In matrix

form the system (3) becomes

Received by the editors August 15, 1957.

1 The authors are now at the University of Wisconsin-Milwaukee and the Ala-

bama Polytechnic Institute, respectively.

243



244 ABRAHAM SPITZBART AND NATHANIEL MACON [April

WB =   Y.

Before proceeding with the solution of this system, we prove a

general theorem from which a simple condition that W be nonsingu-

lar follows. A result in Polya and Szego [2] is the special case of this

theorem in which X0 = 1, Xi = 0 for i = 1, • • • , n.

Theorem 1. Let

k—l k+l n

1    Xo ■ ■ • Xo       Ao    Xo     • • • Xo
k—l k+l n

1      Xi  •   •   • Xi Xi      Xi       •   •   • Xi
Dk =

k-l k+l n

1       %n   '   '   ' Xn An      %n       *   *   "  Xn

and let An+1 be the Vandermonde determinant obtained by replacing X,- by

x\, (i = 0, 1, • • • , n), in Dk. Then we have

n ^.       n—k _.

Dk = An+i Y, —~ Z (~l1 o-jXi    ',
i=0   P (Xi)   y=0

where p(x) = YL"=o (x—xi) and Oj is the sum of all products of the xt

taken j at a time without repetitions or permutations, (o-0 = l).

Proof. Let 7r„(x) = Z"=o cvX" be the polynomial of degree n such

that 7r„ (xt) =Xi, (i = 0, 1, • • • , n). If we solve the system

n

(4) Y CyX, = Xj, i = 0, 1, • • • , n,
>=o

by Cramer's rule, it follows that ck = Dk/An+i. But Ck can also be

obtained by applying Lagrange's interpolation formula to obtain

7T„ (x) and then collecting the terms involving xk, which gives for

Ct the double sum in the statement of the theorem; the theorem is

proved. In particular, we have c„= 2Z"=0 ^i/p'(xi).

Setting k — n we obtain the following

Corollary.

A     Xi
Det W  =   An+1 2^       ■■     "  =   An+lCn-

i=o p(xt)

Since the xt are assumed to be distinct, we have An+i?^0. Thus,

the following theorem holds.

Theorem 2. The system (3) is nonsingular if and only if cHy^0, i.e.,

if and only if no polynomial of degree less than n passes through the

points (xt, Xi), i = 0, 1, ■ • • , n.
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For later applications we state the result below.

Corollary. If the x{, (i = 0, 1, • • • , n), are monotonic, and the Xi

are alternating in sign, then W is nonsingular.

3. Determination of the deviations. We now assume that the con-

dition of Theorem 2 is satisfied. We may then write the solution of

(3) as

(5) B = W-XY.

The solution of this system depends on the determination of W_1,

which inverse is independent of the yt. Let Wi, (i,j= 1,2, • ■ ■ , n + 1)

denote the element in the ith row and jth column of IT7-1. Since d,

uniquely determined by (3), is the last element in the column vector

B, it follows that

n

(6) d = X) Wn+ij+iyj.

Further, we can prove

Theorem 3. The elements in the last row of W~x are given by

1

Cnp'(Xj) '

j = 0, 1, ■ ■ ■ , n. Thus, the ratios of the elements in the last row of W~1

are completely determined by the distribution of the Xi, and are inde-

pendent of the\i.

Proof. Rewriting (3) as ^"Zo bvXi=yi—\id, (i = 0, 1, ■ ■ ■ , n), one

sees that the polynomial y(x) defined by (2) takes on the n + 1

values yi — \id at the x(, (i = 0, 1, • • • , n). Therefore, by Lagrange's

formula, it may be written

" p(x)
(7) y(x) = Z —-^- (yt - \id).

,_0   p (Xi)(X — Xi)

Since, on the other hand, y(x) is of degree n — l, the coefficient of #" in

this sum is zero; thus,

i-0      p'(Xi)

Consequently, we have
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Cn   i=0   P (Xi)

Since the elements wn+ij+i are independent of the yj, the result follows

immediately by comparing the above with (6).

The polynomial (7) along with the value of d given by (8) consti-

tutes one form of the polynomial y(x) sought in the original statement

of the problem. Should we require the individual coefficients b,

(i> = 0, 1, • • • , n—l), the following methods are available:

(i) We may substitute the now known value of d into any n of the

equations (3) and solve the resulting system. The matrix of coeffi-

cients is a Vandermonde matrix, the inverse of which is known ex-

plicitly [3];

(ii) We may collect terms of the various powers of x in (7);

(iii) We may obtain an explicit representation for W~x and per-

form the indicated matrix multiplication in (5).

We choose to develop method (iii) in detail, since the determina-

tion of W~x is of interest in itself.

4. Inversion of the matrix of coefficients. The elements in the last

row of W~l are given by Theorem 3. In this paragraph, we show that

the remaining elements of IF-1 can be expressed very simply in

terms of the elements in this last row and the elements of the inverse

of the Vandermonde matrix F={xfl}}, (i, j=l, 2, • • • , n + l) of
order n + l [cf. 3].

Again we assume cn^0, and rewrite (4) in the form

I     / , CyX,        Ai I Xi.

Cn \ v=o /

Thus, if we write

1       0   •   •   •  0       -Co/cn

0       1   •   •   •  0       -Cl/Cn

A =     .     ,

0      0   •   •   •   1       —Cn-l/Cn

.0      0   •   •   •  0 l/Cn

it follows that

WA = V;

and so

H/-i = AV-1.
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Let us denote the elements of F_1 by v„ (i, j = 1, 2, ■ - - , n + 1). Per-

forming the matrix multiplication indicated above, we get

MVH.J  =  "On+l.i/Cn,

Ci-l

Wij  =   Vij-1>n+l,j =  Vij — Ci-lWn+l,j,

Cn

for i = l, 2, ■ • • , n;j = l, 2, ■ • • , n + 1. Finally, it follows from (4)

that
n+1

Ci-i = 2^i "tfXy_i,
j'=i

for i = 1, 2, • • ■ ,n + l. We shall call the quantity c,_i the \-sum of the

ith row of V~l.

The results are summarized below.

Theorem 4. The elements of W~x can be obtained from those of V~x

as follows:

(a) the elements of the last row are given by wn+i,j = vn+ij/c„,

(j = l,2, • • ■ ,n + l);

(b) to obtain the ith row of W~x for i^n, form the K-sum of the ith

row of V~x and subtract the product of this \-sum and the last row of

W~x from the ith row of V~K

Now let k be any of the numbers 0, 1, • • • , n, and assume ck7^0.

Let \T)k\ denote the matrix of the Dk displayed in Theorem 1, and

let da be the element in the ith row and jth column of {i?*}-1. By

methods similar to those used above, one can derive the relations

dk+i,i = vk+i,i/cic,

Ci-l

da = v^-"t+i,j — va ~ Ci-idk+i,j,
ck

where 2 = 1, 2, ■ ■ ■ , k, k + 2, ■ • ■ , n + l;j=l, 2, • • • , n + 1. Clearly,

Theorem 4 is the special case in which k = n.

5. Application to equally spaced points. Suppose now that xt

= x0+ih, (i = 0, 1, • ■ • , n). We show that in this case the elements

of the last row of W_1 are simple to obtain from Theorem 3; and thus,

the remaining rows come immediately from Theorem 4 and a previ-

ous result expressing the elements of V~x in terms of Stirling numbers

when the x,- are equally spaced [3].

We have, from Theorem 4,

Wn+l,j+l =   l/[cnp'(Xj)],
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(7 = 0, 1, • • • , n), where p(x) = TTjU (x-x{), and cn= Z?=o K/p'(xi)
is assumed to be nonzero. Since here, Xj — Xi = (j — i)h, one sees that

p'(xj) = (-l)n-'j\(n — j)\hn = (—l)n-'n\hn / (  , J.

Hence, we have

Theorem 5. // the points Xi (i = 0, 1, • ■ ■ , n) are equally spaced,

then the elements of the last row of W~1 are proportional to the binomial

coefficients; more exactly, if Xi = x0+ih, then

Wn+i.j+i = (-lY-y.j/ (nlh"cn), (j = 0, 1, • • •, n)

where c„= Z"=o Xi/£'(xi) is assumed to be nonzero.

As an illustration in which cn may be easily evaluated, we choose

the important special case for which \i = ( — l)i, i = 0, 1, • • • , n.

We know from the corollary to Theorem 2 that W~l exists for this

case. We have

n n    / fl\

Cn = Z (~iy/p'(xi) = [(-l)"/(»!*")] Z(   . ) = (-1)"2-/(»!A")
i=0 i=0 \ 1 /

and, further,

wn+i,i+i= (-\y^ / (2hy.

For a given set of y,- we may now obtain d, as given in (6), explicitly as

d= [i/(2£)2]£ (-i)M  . W-
1=0 \t /

6. Application to Chebychev approximation. Another important

special case of the problem here considered was treated in a recent

paper [4]. The points Xi, i = 0, 1, • • • , n are defined by

Xo = 0,        xn = 1,        Tn (xi) =0, i = 1, 2, • • • , » — 1

where T^x) is the Chebychev polynomial of degree n ior the interval

(0, 1),

Tn(x) = (—1)" cos [n arc cos (2x — 1)]

and X< = ( — 1)*', * = 0, 1, • • • , n. (For a general discussion of Cheby-

chev approximation see [5, p. 197 ff ]. Numerous examples are given
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in [6], and an application to the determination of optimum interval

tables may be found in [7].) In particular, we may write Xj explicitly

as

Xj = sin2 (j/2n)T, j = 0, 1, ■ ■ ■ , n.

The polynomial p(x) = Yl"=0 (x — x/) becomes

p(x) = x(x - 1)P»' (*)/(»• 22""1)

from which we obtain

„   . T/(0) r.'(l) Xi(xi-l)T:(Xi)
P (Xo)   =-> p (Xn)   =   - I P (Xi)   =-,

w-22"-1 w-22"-1 w-22"-1

i = 1, 2, ■ • ■ , n — 1.

From [4], we then obtain

p'(xo) = n/22n~2,    p'(xn) = (-l)«»/22n-2,    />'(*,) = (-l)%/22»-1,

* = 1, 2, • • • , » — 1.

Here again c„ is easily computed, and is c„ = 22n~1. The last row of

W~x then becomes

1 1      1 (-l)""1    (-1)"

2n n     n n 2n

and the familiar ratios 1, —2, 2, • • • , ( —l)n-12, ( — 1)", appear.
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