ON POLYNOMIAL APPROXIMATION WITH DEVIATIONS IN PRESCRIBED RATIOS ## ABRAHAM SPITZBART AND NATHANIEL MACON¹ 1. Introduction. The standard formulas for polynomial interpolation provide a representation for the (unique) polynomial y(x) of degree n such that $$y(x_i) = y_i, i = 0, 1, \cdots, n,$$ where x_i and y_i are given, with the x_i distinct. (For a discussion of these methods, cf. [1]). The present paper considers an extended problem for which a polynomial of degree n-1 approximates the n+1 values y_i at $x=x_i$, respectively, with deviations from the given values which are in prescribed ratios. Complete results are obtained for this extended problem, with arbitrary, distinct x_i . The results are then applied to the two important special cases (1) equally spaced points (2) a distribution of x_i determined by a Chebychev approximation. 2. Statement of the problem. Let x_i , y_i , λ_i , $(i = 0, 1, \dots, n)$ be given, with the x_i distinct, throughout. We seek a polynomial y(x) of degree n-1 such that $$y(x_i) = y_i - \lambda_i d, \qquad (i = 0, 1, \dots, n),$$ where d remains to be determined. If we write (2) $$y(x) = \sum_{\nu=0}^{n-1} b_{\nu} x^{\nu},$$ then the condition (1) becomes (3) $$\sum_{r=0}^{n-1} b_r x_i^r + \lambda_i d = y_i, \qquad (i = 0, 1, \dots, n).$$ This is a system of n+1 linear equations in the n+1 quantities b_{ν} , $(\nu=0, 1, \dots, n-1)$, and d. Let B denote the column vector consisting of the b_{ν} and d; let W be the matrix of coefficients of these quantities; and let Y denote the column vector of y's. In matrix form the system (3) becomes Received by the editors August 15, 1957. ¹ The authors are now at the University of Wisconsin-Milwaukee and the Alabama Polytechnic Institute, respectively. $$WB = V$$ Before proceeding with the solution of this system, we prove a general theorem from which a simple condition that W be nonsingular follows. A result in Polya and Szegö [2] is the special case of this theorem in which $\lambda_0 = 1$, $\lambda_i = 0$ for $i = 1, \dots, n$. THEOREM 1. Let $$D_k = \begin{vmatrix} 1 & x_0 & \cdots & x_0^{k-1} & \lambda_0 & x_0^{k+1} & \cdots & x_0 \\ 1 & x_1 & \cdots & x_1^{k-1} & \lambda_1 & x_1^{k+1} & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^{k-1} & \lambda_n & x_n^{k+1} & \cdots & x_n^n \end{vmatrix},$$ and let Δ_{n+1} be the Vandermonde determinant obtained by replacing λ_i by x_i^k , $(i=0, 1, \dots, n)$, in D_k . Then we have $$D_k = \Delta_{n+1} \sum_{i=0}^n \frac{\lambda_i}{p'(x_i)} \sum_{j=0}^{n-k} (-1)^j \sigma_j x_i^{n-k-j},$$ where $p(x) = \prod_{i=0}^{n} (x - x_i)$ and σ_i is the sum of all products of the x_i taken j at a time without repetitions or permutations, $(\sigma_0 \equiv 1)$. PROOF. Let $\pi_n(x) = \sum_{\nu=0}^n c_{\nu} x^{\nu}$ be the polynomial of degree n such that $\pi_n(x_i) = \lambda_i$, $(i = 0, 1, \dots, n)$. If we solve the system (4) $$\sum_{\nu=0}^{n} c_{\nu} x_{i}^{\nu} = \lambda_{i}, \qquad i = 0, 1, \cdots, n,$$ by Cramer's rule, it follows that $c_k = D_k/\Delta_{n+1}$. But c_k can also be obtained by applying Lagrange's interpolation formula to obtain $\pi_n(x)$ and then collecting the terms involving x^k , which gives for c_k the double sum in the statement of the theorem; the theorem is proved. In particular, we have $c_n = \sum_{i=0}^n \lambda_i/p'(x_i)$. Setting k = n we obtain the following COROLLARY. Det $$W = \Delta_{n+1} \sum_{i=0}^{n} \frac{\lambda_i}{p'(x_i)} = \Delta_{n+1} c_n$$. Since the x_i are assumed to be distinct, we have $\Delta_{n+1} \neq 0$. Thus, the following theorem holds. THEOREM 2. The system (3) is nonsingular if and only if $c_n \neq 0$, i.e., if and only if no polynomial of degree less than n passes through the points (x_i, λ_i) , $i = 0, 1, \dots, n$. For later applications we state the result below. COROLLARY. If the x_i , $(i=0, 1, \dots, n)$, are monotonic, and the λ_i are alternating in sign, then W is nonsingular. 3. Determination of the deviations. We now assume that the condition of Theorem 2 is satisfied. We may then write the solution of (3) as $$(5) B = W^{-1}Y.$$ The solution of this system depends on the determination of W^{-1} , which inverse is independent of the y_i . Let w_{ij} $(i, j = 1, 2, \dots, n+1)$ denote the element in the *i*th row and *j*th column of W^{-1} . Since d, uniquely determined by (3), is the last element in the column vector B, it follows that (6) $$d = \sum_{j=0}^{n} w_{n+1,j+1} y_{j}.$$ Further, we can prove THEOREM 3. The elements in the last row of W^{-1} are given by $$w_{n+1,j+1} = \frac{1}{c_n p'(x_j)},$$ $j=0, 1, \dots, n$. Thus, the ratios of the elements in the last row of W^{-1} are completely determined by the distribution of the x_i , and are independent of the λ_i . PROOF. Rewriting (3) as $\sum_{\nu=0}^{n-1} b_{\nu} x_{i}^{\nu} = y_{i} - \lambda_{i} d$, $(i=0, 1, \dots, n)$, one sees that the polynomial y(x) defined by (2) takes on the n+1 values $y_{i} - \lambda_{i} d$ at the x_{i} , $(i=0, 1, \dots, n)$. Therefore, by Lagrange's formula, it may be written (7) $$y(x) = \sum_{i=0}^{n} \frac{p(x)}{p'(x_i)(x-x_i)} (y_i - \lambda_i d).$$ Since, on the other hand, y(x) is of degree n-1, the coefficient of x^n in this sum is zero; thus, $$\sum_{i=0}^{n} \frac{y_i - \lambda_i d}{p'(x_i)} = 0.$$ Consequently, we have (8) $$d = \frac{1}{c_n} \sum_{i=0}^{n} \frac{y_i}{p'(x_i)}.$$ Since the elements $w_{n+1,j+1}$ are independent of the y_i , the result follows immediately by comparing the above with (6). The polynomial (7) along with the value of d given by (8) constitutes one form of the polynomial y(x) sought in the original statement of the problem. Should we require the individual coefficients b_r ($r=0, 1, \dots, r-1$), the following methods are available: - (i) We may substitute the now known value of d into any n of the equations (3) and solve the resulting system. The matrix of coefficients is a Vandermonde matrix, the inverse of which is known explicitly [3]; - (ii) We may collect terms of the various powers of x in (7); - (iii) We may obtain an explicit representation for W^{-1} and perform the indicated matrix multiplication in (5). We choose to develop method (iii) in detail, since the determination of W^{-1} is of interest in itself. 4. Inversion of the matrix of coefficients. The elements in the last row of W^{-1} are given by Theorem 3. In this paragraph, we show that the remaining elements of W^{-1} can be expressed very simply in terms of the elements in this last row and the elements of the inverse of the Vandermonde matrix $V = \{x_{i-1}^{j-1}\}$, $(i, j=1, 2, \cdots, n+1)$ of order n+1 [cf. 3]. Again we assume $c_n \neq 0$, and rewrite (4) in the form $$-\frac{1}{c_n}\left(\sum_{\nu=0}^{n-1}c_{\nu}x_i^{\nu}-\lambda_i\right)=x_i^n.$$ Thus, if we write $$A = \begin{pmatrix} 1 & 0 & \cdots & 0 & -c_0/c_n \\ 0 & 1 & \cdots & 0 & -c_1/c_n \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & -c_{n-1}/c_n \\ 0 & 0 & \cdots & 0 & 1/c_n \end{pmatrix} ,$$ it follows that $$WA = V$$: and so $$W^{-1} = AV^{-1}$$ Let us denote the elements of V^{-1} by v_{ij} $(i, j = 1, 2, \dots, n+1)$. Performing the matrix multiplication indicated above, we get $$w_{n+1,j} = v_{n+1,j}/c_n,$$ $w_{ij} = v_{ij} - \frac{c_{i-1}}{c_n} v_{n+1,j} = v_{ij} - c_{i-1} w_{n+1,j},$ for $i=1, 2, \dots, n$; $j=1, 2, \dots, n+1$. Finally, it follows from (4) that $$c_{i-1}=\sum_{j=1}^{n+1}v_{ij}\lambda_{j-1},$$ for $i = 1, 2, \dots, n+1$. We shall call the quantity c_{i-1} the λ -sum of the *ith row of* V^{-1} . The results are summarized below. Theorem 4. The elements of W^{-1} can be obtained from those of V^{-1} as follows: - (a) the elements of the last row are given by $w_{n+1,j} = v_{n+1,j}/c_n$, $(j=1, 2, \cdots, n+1)$; - (b) to obtain the ith row of W^{-1} for $i \leq n$, form the λ -sum of the ith row of V^{-1} and subtract the product of this λ -sum and the last row of W^{-1} from the ith row of V^{-1} . Now let k be any of the numbers $0, 1, \dots, n$, and assume $c_k \neq 0$. Let $\{D_k\}$ denote the matrix of the D_k displayed in Theorem 1, and let d_{ij} be the element in the *i*th row and *j*th column of $\{D_k\}^{-1}$. By methods similar to those used above, one can derive the relations $$d_{k+1,j} = v_{k+1,j}/c_k,$$ $$d_{ij} = v_{ij} - \frac{c_{i-1}}{c_k} v_{k+1,j} = v_{ij} - c_{i-1}d_{k+1,j},$$ where $i=1, 2, \dots, k, k+2, \dots, n+1; j=1, 2, \dots, n+1$. Clearly, Theorem 4 is the special case in which k=n. 5. Application to equally spaced points. Suppose now that $x_i = x_0 + ih$, $(i = 0, 1, \dots, n)$. We show that in this case the elements of the last row of W^{-1} are simple to obtain from Theorem 3; and thus, the remaining rows come immediately from Theorem 4 and a previous result expressing the elements of V^{-1} in terms of Stirling numbers when the x_i are equally spaced [3]. We have, from Theorem 4, $$w_{n+1,i+1} = 1/[c_n p'(x_i)],$$ $(j=0, 1, \dots, n)$, where $p(x) = \prod_{i=0}^{n} (x-x_i)$, and $c_n = \sum_{i=0}^{n} \lambda_i / p'(x_i)$ is assumed to be nonzero. Since here, $x_j - x_i = (j-i)h$, one sees that $$p'(x_j) = (-1)^{n-j} j!(n-j)!h^n = (-1)^{n-j} n!h^n \bigg/ \binom{n}{j}.$$ Hence, we have THEOREM 5. If the points x_i $(i=0, 1, \dots, n)$ are equally spaced, then the elements of the last row of W^{-1} are proportional to the binomial coefficients; more exactly, if $x_i = x_0 + ih$, then $$w_{n+1,j+1} = (-1)^{n-j} \binom{n}{j} / (n!h^n c_n), \qquad (j = 0, 1, \dots, n)$$ where $c_n = \sum_{i=0}^n \lambda_i / p'(x_i)$ is assumed to be nonzero. As an illustration in which c_n may be easily evaluated, we choose the important special case for which $\lambda_i = (-1)^i$, $i = 0, 1, \dots, n$. We know from the corollary to Theorem 2 that W^{-1} exists for this case. We have $$c_n = \sum_{i=0}^n (-1)^i / p'(x_i) = \left[(-1)^n / (n!h^n) \right] \sum_{i=0}^n \binom{n}{i} = (-1)^n 2^n / (n!h^n)$$ and, further, $$w_{n+1,j+1} = (-1)^n \binom{n}{i} / (2h)^n.$$ For a given set of y_i we may now obtain d, as given in (6), explicitly as $$d = [1/(2h)^{2}] \sum_{i=0}^{n} (-1)^{i} {n \choose i} y_{i}$$ 6. Application to Chebychev spproximation. Another important special case of the problem here considered was treated in a recent paper [4]. The points x_i , $i = 0, 1, \dots, n$ are defined by $$x_0 = 0,$$ $x_n = 1,$ $T'_n(x_i) = 0,$ $i = 1, 2, \dots, n-1$ where $T_n(x)$ is the Chebychev polynomial of degree n for the interval (0, 1), $$T_n(x) = (-1)^n \cos [n \arccos (2x - 1)]$$ and $\lambda_i = (-1)^i$, $i = 0, 1, \dots, n$. (For a general discussion of Chebychev approximation see [5, p. 197 ff]. Numerous examples are given in [6], and an application to the determination of optimum interval tables may be found in [7].) In particular, we may write x_i explicitly as $$x_j = \sin^2{(j/2n)\pi}, \qquad j = 0, 1, \dots, n.$$ The polynomial $p(x) = \prod_{i=0}^{n} (x - x_i)$ becomes $$p(x) = x(x-1)T'_n(x)/(n \cdot 2^{2n-1})$$ from which we obtain $$p'(x_0) = -\frac{T_n'(0)}{n \cdot 2^{2n-1}}, \quad p'(x_n) = \frac{T_n'(1)}{n \cdot 2^{2n-1}}, \quad p'(x_i) = \frac{x_i(x_i - 1)T_n'(x_i)}{n \cdot 2^{2n-1}},$$ $$i = 1, 2, \dots, n-1.$$ From [4], we then obtain $$p'(x_0) = n/2^{2n-2}, \quad p'(x_n) = (-1)^n n/2^{2n-2}, \quad p'(x_i) = (-1)^i n/2^{2n-1},$$ $i = 1, 2, \dots, n-1.$ Here again c_n is easily computed, and is $c_n = 2^{2n-1}$. The last row of W^{-1} then becomes $$\frac{1}{2n}$$, $-\frac{1}{n}$, $\frac{1}{n}$, ..., $\frac{(-1)^{n-1}}{n}$, $\frac{(-1)^n}{2n}$ and the familiar ratios 1, -2, 2, \cdots , $(-1)^{n-1}$ 2, $(-1)^n$, appear. ## REFERENCES - 1. F. B. Hildebrand, Introduction to numerical analysis, New York, McGraw-Hill, 1956. - 2. G. Polya and G. Szegö, Aufgaben und Lehrsütze aus der Analysis, Vol. II, New York, Dover, 1945, Problem 10, p. 99. - 3. N. Macon, and A. Spitzbart, *Inverses of Vandermonde matrices*, Amer. Math. Monthly vol. 65 (1958) pp. 95-100. - **4.** A. Spitzbart, and D. L. Shell, A Chebycheff fitting criterion, Journal of the Association for Computing Machinery vol. 5 (1958) pp. 22–31. - 5. A. S. Householder, *Principles of numerical analysis*, New York, McGraw-Hill, 1953, pp. 197-200. - 6. C. Hastings, Jr. Approximations for digital computers, Princeton University Press, 1955. - 7. H. R. J. Grosch, *The use of optimum interval mathematical tables*, Proceedings Scientific Computation Forum, I.B.M. Corp., New York, 1948, pp. 23–27. GENERAL ELECTRIC COMPANY, CINCINNATI, OHIO