
INTEGRABILITY OF TRIGONOMETRIC SERIES1
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Boas [l] has proved the following theorems:

Theorem A. i/XB I 0 ultimately, and if f(x) =Xo/2+ 52™ ̂» cos nx<
then for 0<7<1, x~yf(x)G.L(0, 7r)<=>22w-r~1^» converges.

Theorem B. 7/Xb^0 ultimately, and if \o/2+ 22" X„ = 0 then (with

f(x) as in Theorem A) x_1/(x)£Z,(0, 7r)<=*22(l°g n)^» converges.

The following theorem for sine series was proved by Young [6] for

7 = 0, by Boas [l] for 0<y ^1, and by Heywood [4] for Ky <2.

Theorem C. J/Xb j 0 ultimately, and if g(x) = 22™ ̂ » sin nx, then for
0^7<2, x~*g(x)GL(0, 7r)<=>22w1'"l^n converges.

Stronger versions for each half of Theorems A and C were proved

by Boas [l] for 0<7<1 and for 0<7^1 respectively. For 1<7<2

Heywood [4] proved Theorem C when XBS0 ultimately.

Heywood [4] also has proved the following extension of Theorems

A and B.

Theorem D. If XBS;0 ultimately, and if X0/2+ 22™ XB = 0, then for
1 <7<3 x_1/(x)£Z,(0, 7r)4=>22Ml'~1^n converges.

By using a result of Hartman and Wintner [3], Heywood [4]

showed that for 7=^3 and for 7=^2, respectively, Theorem D and

Theorem C break down. On the other hand Boas and Gonzalez-Fer-

nandez [2] have proved the following theorem, proved before by

Heywood [4] for 7 <2.

Theorem E. If h(x) = 22" XBx" has radius of convergence 1, if

XBS:0 ultimately, and if 7 <1 or if &^7<jfe-fT (where k is a positive
integer) then provided that

00 00 QO

22 X» = 22 ti\n = • • • = 52 n(n — 1) • • • (n — k + 2)XB = 0
0 1 k-1

(i) forj7*k, (l—x)—rh(x)(E.L(0, 1)<=>22wY-1^» converges,

(ii) for y = k, (l—x)~«h(x)€;L(0, l)<=>22w'r~1(l0g «)XB converges.

The structure of Theorem E suggests companion theorems for the
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cosine and for the sine theorems. In this note we shall prove the fol-

lowing theorems:

Theorem 1. If X„^0 ultimately let Xo/2 + E" A« cos nx converge to

f(x); if for some integer j^O,

1 OO OO OO

(1) — Xo + E K = E n2\n = • • • = E n2'\n = 0
2 i i i

then (i) for 2j + l<y<2(j + l)+l, x-*f(x)£L(0, w)^> E«7_lx-» ™«-

verges, and (ii) /or 7 = 2/+l, x"7/(x)GI(0, 7r)<=*EMT_10og »)X„ con-

verges.

Theorem 2. //X„2:0 ultimately let Ei°° A» sin wx converge to g(x); if

for some integer I ̂  1,

co oo oo

(2) T,n\n=H «3Xn  =    •   •   •   =   E  «2'_1An   =   0
11 1

then (i) for 2Ky<2(l+l),x~yg(x)E:L(0,7r)<=>Ew-r~'A» converges,and

(ii) /or 7 = 2/, x_7g(x)£L(0, 7r)<=*Ew7_10og M)A» converges.

Before going into the proof of Theorem 1, let us examine the nature

of the assumption (1). We have that if Ew7_1(l°g w)^» converges for

7 = 2/ + l or if EwT~lA» converges for 2j + l<y<2(j' + l)+l then the

series X0/2 + E™ A»> E™ nT^n, • • • , Ei°° nif^n converge; but

y^.r »2,;Xn cos wx= ( —l)*/(2A;)(x), O^k^j, therefore (by uniform con-

vergence) /(2A:)(x)—>Ei°° w2iA» as x—>0 for O^k^j. On the other hand

/(*) =/(0) + x/(1)(*) + ^r/{2)(*) + ■ • • +     *'  i,,/w"1)W
2! (2j - 1)!

**'
H-fm)(6x),

(2jV.

Ogfl^l, and

ar"r+2»'
*-»/(*) = arV(0) + arrt-y»>(*) + • • • +-/(2,)(^)

(2/)!

from which it follows that in order for x~yf(x) E£(0, ir) we must have

that

1 00 00 00

(1) — Xo + E *» = E w2X„ = ■ • ■ = E n2'Xn = 0.
2 i i i

An analogous comment applies to assumption (2) of Theorem 2.
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For the proof of Theorem 1 we need the following simple lemma:

Lemma 1.

y2 y2'+1 (^0   for j even,
cos y — 1 -\-■ ■ • + (— 1)'-\

2! (2j)\ l^ 0   for j odd.

Proof. We have that cos y = l-yV2!+ • ■ ■ +(-l)'y2,7(2i)!

+ • • •. For _;' even write

f yi yli
cosy — 1 H-V • • •-

2!      4! (2j)!
(3) ■"

^2(j'+l) ylti+t)

'  [2(;+l)]!+ [2(j+2)]\

by repeated differentiation of the right hand side of (3) we change it

into — siny; the process is legitimate because of the uniform con-

vergence of the differentiated series; then by integrating the last

series obtained, from 0 to y, repeatedly, legitimate by uniform con-

vergence, we get back the right hand side of (3), hence it is not posi-

tive.

For j odd write

yi ytj yW+V

(4) cos y — 1 H-• • • H-= t-;-
2! O)!      [2(j+l)]l

an analogous process yields that (4) is not negative.

We now prove Theorem 1. By using (1) we can write

"       T (nx)2 (nx)2n
'(*) = 22 XB   cos rcx - 1 + ^-f-+(_i)m^±.

i       L 2! (2j)! J

= 22 KKj(nx).
i

By Lemma 1, for every n and x, Kj(nx) is of the same sign. If j is

even we write —f(x)= 22" X„( — Kj(nx)) where — Kj(nx)^0; if j is

odd we write/(x) = 22™ AnKj(nx) where Kj(nx) 2;0.

Since

(nx)2<-'+1) (rcx)2»+2>
Kj(nx) = (~1)'+1 r + (-1)'+2 -~-r- + • • ■

[20+ 1)]! [2(j+2)\r

then for x—>0 and fixed n, Kj{nx)~Ax2<->+1), hence for 2(j+l) <y

<2(j + l) + l we have that for every n, x~'*Kj(nx)(EL(0, ir).
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For the sake of definiteness suppose that/ is odd, and suppose that

for n^N, X„^0; then write

/»T f*  T 00x~yf(x)dx =   I    x~y E X„Kj(nx)dx
o J o 1

/T /  A*—1 00   \x~yl  E + T,) Kj(nx)dx.

Since for every n, x~yKj(nx)(E:L(0, tt) then x~y Ef"1 Xrei^,(wx)

GL(0, tt), therefore r'/(x)GL(0, x)»r'^jf \nKj(nx)GL(0, w),

but since the latter is a series of positive terms then

oo oc ^ r

x~y E XniT,(»x) G L(0, t) <=> E A» I    xryKj(nx)dx
N X J 0

(5) oo /. nir

= E A»«7-1 I    y~^Ki(y)dy
N JO

converges.

Now if y = 2/ +1

/» nir

j     yntim)Kjfy)dy

J o

/""      f y2 y2' "I 10  ^[™y - 1 + - - - ■ ■ + —\dy~—logn

so by positivity we have that (5) converges *=>Eiv ny~1(log n)\n con-

verges, which proves (i) for/ odd.

Consider now the case 2/ + 1 <y<2(j + l) + l. Since we assume/

to be odd, Kj(y)^0, therefore Jl!i'y-yKj(y)dy is ^0 and | with n,

hence

oo n Nir oo r* nr

E Kny~l I      y-yKj(y)dy ̂ E ^«7_1 I     y-yKj(y)dy.
N " 0 Af •J 0

Hence if (5) converges then EA"w7~1 does so, which proves the "only

if" part of (ii) for/ odd.

Since

/ yi y*i \ 1
Kj(y) = I cos y — 1 H-■ • • H-1 ~-y2' as y —> oo

7       \      y 21 (2i)!/      (2j)!7

then
1

y_Ti£",(y) ~-3I-T+2J as y -> oo,

' (2/)!-"
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and since 1 <y — 2j then foy~yKj(y)dy < °°. Now write

oo /% mc oo /» oo

22 Anw^"1 I     y~<Kj(y)dy g 22 ̂ w7_1 \    y~yKj(y)dy
N Jo N J 0

so the convergence of 22Anw7~1=> the convergence of (5), thus the

"if" part of (ii) is proved, forj odd.

For j even the proof is mutatis mutandis the same.

The proof of Theorem 2 is analogous to the proof of Theorem 1; the

role of Lemma 1 is taken here by the following lemma.

Lemma 2.

y3      y5 y2'-1      f = 0   for I even,
sin y — y -\-\- ••■ + (— 1)'-<

3!      5! (22-1)1 1^0   for I odd.

The proof of Lemma 2 is analogous to the proof of Lemma 1,

or shorter:

d r y3 y2'"1     I
—   sin y — y -\-••• + (—IV-
dyl 31 (21- l)!j

yi yW-l)

= cosy- 1 +~ - • • • + (-I)'t-^-:
2! [2(1    - 1)]!

by Lemma 1 the right hand side has a fixed sign, so the lemma follows

because sin y-y-f- • • • +(-l)'y2'-V(2/-l)! is 0 at y = 0.
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