INTEGRABILITY OF TRIGONOMETRIC SERIES¹

J. M. GONZÁLEZ-FERNÁNDEZ

Boas [1] has proved the following theorems:
Theorem A. If $\lambda_{n} \downarrow 0$ ultimately, and if $f(x)=\lambda_{0} / 2+\sum_{1}^{\infty} \lambda_{n} \cos n x$, then for $0<\gamma<1, x^{-\gamma} f(x) \in L(0, \pi) \Leftrightarrow \sum n^{\gamma-1} \lambda_{n}$ converges.

Theorem B. If $\lambda_{n} \geqq 0$ ultimately, and if $\lambda_{0} / 2+\sum_{1}^{\infty} \lambda_{n}=0$ then (with $f(x)$ as in Theorem $A) x^{-1} f(x) \in L(0, \pi) \Leftrightarrow \sum(\log n) \lambda_{n}$ converges.

The following theorem for sine series was proved by Young [6] for $\gamma=0$, by Boas [1] for $0<\gamma \leqq 1$, and by Heywood [4] for $1<\gamma<2$.

Theorem C. If $\lambda_{n} \downarrow 0$ ultimately, and if $g(x)=\sum_{1}^{\infty} \lambda_{n} \sin n x$, then for $0 \leqq \gamma<2, x^{-\gamma} g(x) \in L(0, \pi) \Leftrightarrow \sum n^{\gamma-1} \lambda_{n}$ converges.

Stronger versions for each half of Theorems A and C were proved by Boas [1] for $0<\gamma<1$ and for $0<\gamma \leqq 1$ respectively. For $1<\gamma<2$ Heywood [4] proved Theorem C when $\lambda_{n} \geqq 0$ ultimately.

Heywood [4] also has proved the following extension of Theorems A and B.

Theorem D. If $\lambda_{n} \geqq 0$ ultimately, and if $\lambda_{0} / 2+\sum_{1}^{\infty} \lambda_{n}=0$, then for $1<\gamma<3 x^{-\gamma} f(x) \in L(0, \pi) \Leftrightarrow \sum n^{\gamma-1} \lambda_{n}$ converges.

By using a result of Hartman and Wintner [3], Heywood [4] showed that for $\gamma \geqq 3$ and for $\gamma \geqq 2$, respectively, Theorem D and Theorem C break down. On the other hand Boas and González-Fernández [2] have proved the following theorem, proved before by Heywood [4] for $\gamma<2$.

Theorem E. If $h(x)=\sum_{0}^{\infty} \lambda_{n} x^{n}$ has radius of convergence 1 , if $\lambda_{n} \geqq 0$ ultimately, and if $\gamma<1$ or if $k \leqq \gamma<k+1$ (where k is a positive integer) then provided that

$$
\sum_{0}^{\infty} \lambda_{n}=\sum_{1}^{\infty} n \lambda_{n}=\cdots=\sum_{k-1}^{\infty} n(n-1) \cdots(n-k+2) \lambda_{n}=0
$$

(i) for $\gamma \neq k,(1-x)^{-\gamma} h(x) \in L(0,1) \Leftrightarrow \sum n^{\gamma-1} \lambda_{n}$ converges,
(ii) for $\gamma=k,(1-x)^{-\gamma} h(x) \in L(0,1) \Leftrightarrow \sum n^{\gamma-1}(\log n) \lambda_{n}$ converges.

The structure of Theorem E suggests companion theorems for the

[^0]cosine and for the sine theorems. In this note we shall prove the following theorems:

Theorem 1. If $\lambda_{n} \geqq 0$ ultimately let $\lambda_{0} / 2+\sum_{1}^{\infty} \lambda_{n} \cos n x$ converge to $f(x)$; if for some integer $j \geqq 0$,

$$
\begin{equation*}
\frac{1}{2} \lambda_{0}+\sum_{1}^{\infty} \lambda_{n}=\sum_{1}^{\infty} n^{2} \lambda_{n}=\cdots=\sum_{1}^{\infty} n^{2 j} \lambda_{n}=0 \tag{1}
\end{equation*}
$$

then (i) for $2 j+1<\gamma<2(j+1)+1, x^{-\gamma} f(x) \in L(0, \pi) \Leftrightarrow \sum n^{\gamma-1} \lambda_{n}$ converges, and (ii) for $\gamma=2 j+1, x^{-\gamma} f(x) \in L(0, \pi) \Leftrightarrow \sum n^{\gamma-1}(\log n) \lambda_{n}$ converges.

Theorem 2. If $\lambda_{n} \geqq 0$ ultimately let $\sum_{1}^{\infty} \lambda_{n} \sin n x$ converge to $g(x)$; if for some integer $l \geqq 1$,

$$
\begin{equation*}
\sum_{1}^{\infty} n \lambda_{n}=\sum_{1}^{\infty} n^{3} \lambda_{n}=\cdots=\sum_{1}^{\infty} n^{2 l-1} \lambda_{n}=0 \tag{2}
\end{equation*}
$$

then (i) for $2 l<\gamma<2(l+1), x^{-\gamma} g(x) \in L(0, \pi) \Leftrightarrow \sum n^{\gamma-1} \lambda_{n}$ converges, and (ii) for $\gamma=2 l, x^{-\gamma} g(x) \in L(0, \pi) \Leftrightarrow \sum n^{\gamma-1}(\log n) \lambda_{n}$ converges.

Before going into the proof of Theorem 1, let us examine the nature of the assumption (1). We have that if $\sum n^{\gamma-1}(\log n) \lambda_{n}$ converges for $\gamma=2 j+1$ or if $\sum n^{\gamma-1} \lambda_{n}$ converges for $2 j+1<\gamma<2(j+1)+1$ then the series $\lambda_{0} / 2+\sum_{1}^{\infty} \lambda_{n}, \quad \sum_{1}^{\infty} n^{2} \lambda_{n}, \cdots, \quad \sum_{1}^{\infty} n^{2} \lambda_{n}$ converge; but $\sum_{1}^{\infty} n^{2 k} \lambda_{n} \cos n x=(-1)^{k} f^{(2 k)}(x), 0 \leqq k \leqq j$, therefore (by uniform convergence) $f^{(2 k)}(x) \rightarrow \sum_{1}^{\infty} n^{2 k} \lambda_{n}$ as $x \rightarrow 0$ for $0 \leqq k \leqq j$. On the other hand

$$
\begin{aligned}
f(x)= & f(0)+x f^{(1)}(x)+\frac{x^{2}}{2!} f^{(2)}(x)+\cdots+\frac{x^{2 j-1}}{(2 j-1)!} f^{(2 j-1)}(x) \\
& +\frac{x^{2 j}}{(2 j)!} f^{(2 j)}(\theta x),
\end{aligned}
$$

$0 \leqq \theta \leqq 1$, and

$$
x^{-\gamma} f(x)=x^{-\gamma} f(0)+x^{-\gamma+1} f^{(1)}(x)+\cdots+\frac{x^{-\gamma+2 j}}{(2 j)!} f^{(2 j)}(\theta x)
$$

from which it follows that in order for $x^{-\gamma} f(x) \in L(0, \pi)$ we must have that

$$
\begin{equation*}
\frac{1}{2} \lambda_{0}+\sum_{1}^{\infty} \lambda_{n}=\sum_{1}^{\infty} n^{2} \lambda_{n}=\cdots=\sum_{1}^{\infty} n^{2 j} \lambda_{n}=0 . \tag{1}
\end{equation*}
$$

An analogous comment applies to assumption (2) of Theorem 2.

For the proof of Theorem 1 we need the following simple lemma:
Lemma 1.

$$
\cos y-1+\frac{y^{2}}{2!}-\cdots+(-1)^{i} \frac{y^{2 j+1}}{(2 j)!} \begin{cases}\leqq & \text { for } j \text { even, } \\ \geqq 0 & \text { for } j \text { odd. }\end{cases}
$$

Proof. We have that $\cos y=1-y^{i} / 2!+\cdots+(-1)^{i} y^{2 i} /(2 j)$! $+\cdots$. For j even write

$$
\begin{align*}
\cos y-1+\frac{y^{2}}{2!}-\frac{y^{4}}{4!}+\cdots & -\frac{y^{2 j}}{(2 j)!} \\
& =-\frac{v^{2(j+1)}}{[2(j+1)]!}+\frac{y^{2(i+2)}}{[2(j+2)]!}-\cdots \tag{3}
\end{align*}
$$

by repeated differentiation of the right hand side of (3) we change it into $-\sin y$; the process is legitimate because of the uniform convergence of the differentiated series; then by integrating the last series obtained, from 0 to y, repeatedly, legitimate by uniform convergence, we get back the right hand side of (3), hence it is not positive.

For j odd write

$$
\begin{equation*}
\cos y-1+\frac{y^{2}}{2!}-\cdots+\frac{y^{2 j}}{(2 j)!}=\frac{y^{2(j+1)}}{[2(j+1)]!}-\cdots \tag{4}
\end{equation*}
$$

an analogous process yields that (4) is not negative.
We now prove Theorem 1. By using (1) we can write

$$
\begin{aligned}
f(x) & =\sum_{1}^{\infty} \lambda_{n}\left[\cos n x-1+\frac{(n x)^{2}}{2!}-\cdots+(-1)^{i+1} \frac{(n x)^{2 j}}{(2 j)!}\right] \\
& =\sum_{1}^{\infty} \lambda_{n} K_{j}(n x) .
\end{aligned}
$$

By Lemma 1 , for every n and $x, K_{j}(n x)$ is of the same sign. If j is even we write $-f(x)=\sum_{1}^{\infty} \lambda_{n}\left(-K_{j}(n x)\right)$ where $-K_{j}(n x) \geqq 0$; if j is odd we write $f(x)=\sum_{1}^{\infty} \lambda_{n} K_{j}(n x)$ where $K_{j}(n x) \geqq 0$.

Since

$$
K_{j}(n x)=(-1)^{j+1} \frac{(n x)^{2(j+1)}}{[2(j+1)]!}+(-1)^{j+2} \frac{(n x)^{2(j+2)}}{[2(j+2)]!}+\cdots
$$

then for $x \rightarrow 0$ and fixed $n, K_{j}(n x) \sim A x^{2(j+1)}$, hence for $2(j+1)<\gamma$ $<2(j+1)+1$ we have that for every $n, x^{-\gamma} K_{j}(n x) \in L(0, \pi)$.

For the sake of definiteness suppose that j is odd, and suppose that for $n \geqq N, \lambda_{n} \geqq 0$; then write

$$
\begin{aligned}
\int_{0}^{\pi} x^{-\gamma} f(x) d x & =\int_{0}^{\pi} x^{-\gamma} \sum_{1}^{\infty} \lambda_{n} K_{j}(n x) d x \\
& =\int_{0}^{\pi} x^{-\gamma}\left(\sum_{1}^{N-1}+\sum_{N}^{\infty}\right) K_{j}(n x) d x
\end{aligned}
$$

Since for every $n, x^{-\gamma} K_{j}(n x) \in L(0, \pi)$ then $x^{-\gamma} \sum_{1}^{N-1} \lambda_{n} K_{j}(n x)$ $\in L(0, \pi)$, therefore $x^{-\gamma} f(x) \in L(0, \pi) \Leftrightarrow x^{-\gamma} \sum_{N}^{\infty} \lambda_{n} K_{j}(n x) \in L(0, \pi)$, but since the latter is a series of positive terms then

$$
\begin{align*}
x^{-\gamma} \sum_{N}^{\infty} \lambda_{n} K_{j}(n x) \in L(0, \pi) & \Leftrightarrow \sum_{x}^{\infty} \lambda_{n} \int_{0}^{\pi} x^{-\gamma} K_{j}(n x) d x \\
& =\sum_{N}^{\infty} \lambda_{n} n^{\gamma-1} \int_{0}^{n \pi} y^{-\gamma} K_{j}(y) d y \tag{5}
\end{align*}
$$

converges.
Now if $\gamma=2 j+1$

$$
\begin{aligned}
& \int_{0}^{n \pi} y^{-(2 j+1)} K_{j}(y) d y \\
& \quad=\int_{0}^{n \pi} y^{-\gamma}\left[\cos y-1+\frac{y^{2}}{2!}-\cdots+\frac{y^{2 j}}{(2 j)!}\right] d y \sim \frac{1}{(2 j)!} \log n
\end{aligned}
$$

so by positivity we have that (5) converges $\Leftrightarrow \sum_{N}^{\infty} n^{\gamma-1}(\log n) \lambda_{n}$ converges, which proves (i) for j odd.

Consider now the case $2 j+1<\gamma<2(j+1)+1$. Since we assume j to be odd, $K_{j}(y) \geqq 0$, therefore $\int_{0}^{n \pi} y^{-\gamma} K_{j}(y) d y$ is $\geqq 0$ and \uparrow with n, hence

$$
\sum_{N}^{\infty} \lambda_{n} n^{\gamma-1} \int_{0}^{N \pi} y^{-\gamma} K_{j}(y) d y \leqq \sum_{N}^{\infty} \lambda_{n} n^{\gamma-1} \int_{0}^{n \pi} y^{-\gamma} K_{j}(y) d y
$$

Hence if (5) converges then $\sum \lambda_{n} n^{\gamma-1}$ does so, which proves the "only if" part of (ii) for j odd.

Since

$$
K_{j}(y)=\left(\cos y-1+\frac{y^{2}}{2!}-\cdots+\frac{y^{2 j}}{(2 j)!}\right) \sim \frac{1}{(2 j)!} y^{2 j} \text { as } y \rightarrow \infty
$$

then

$$
y^{-\gamma} K_{j}(y) \sim \frac{1}{(2 j)!} y^{-\gamma+2 j} \text { as } y \rightarrow \infty
$$

and since $1<\gamma-2 j$ then $\int_{0}^{\infty} y^{-\gamma} K_{j}(y) d y<\infty$. Now write

$$
\sum_{N}^{\infty} \lambda_{n} n^{\gamma-1} \int_{0}^{n \pi} y^{-\gamma} K_{j}(y) d y \leqq \sum_{N}^{\infty} \lambda_{n} n^{\gamma-1} \int_{0}^{\infty} y^{-\gamma} K_{j}(y) d y
$$

so the convergence of $\sum \lambda_{n} n^{\gamma-1} \Rightarrow$ the convergence of (5), thus the "if" part of (ii) is proved, for j odd.

For j even the proof is mutatis mutandis the same.
The proof of Theorem 2 is analogous to the proof of Theorem 1 ; the role of Lemma 1 is taken here by the following lemma.

Lemma 2.

The proof of Lemma 2 is analogous to the proof of Lemma 1 , or shorter:

$$
\begin{aligned}
\frac{d}{d y}\left[\sin y-y+\frac{y^{3}}{3!}\right. & \left.-\cdots+(-1)^{l} \frac{y^{2 l-1}}{(2 l-1)!}\right] \\
& =\cos y-1+\frac{y^{2}}{2!}-\cdots+(-1)^{l} \frac{y^{2(l-1)}}{[2(l-1)]!}
\end{aligned}
$$

by Lemma 1 the right hand side has a fixed sign, so the lemma follows because $\sin y-y+\cdots+(-1)^{l} y^{2 l-1} /(2 l-1)!$ is 0 at $y=0$.

References

1. R. P. Boas, Integrability of trigonometric series (III), Quart. J. Math. Oxford Ser. (2) vol. 3 (1952) pp. 217-221.
2. R. P. Boas and J. M. González-Fernández, Integrability theorems for LaplaceStieltjes transforms, J. London Math. Soc. vol. 32 (1957) pp. 48-53.
3. P. Hartman and A. Wintner, On sine series with monotone coefficients, J. London Math. Soc. vol. 28 (1953) pp. 102-104.
4. P. Heywood, On the integrability of functions defined by trigonometric series, Quart. J. Math. Oxford Ser. (2) vol. 5 (1954) pp. 71-76.
5. -_, Integrability theorems for power series and Laplace transforms, J. London Math. Soc. vol. 30 (1955) pp. 302-310.
6. W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. (2) vol. 12 (1913) pp. 41-70.

Northwestern University

[^0]: Received by the editors July 23, 1957.
 ${ }^{1}$ Research supported by the National Science Foundation.

