INTEGRABILITY OF TRIGONOMETRIC SERIES!
J. M. GONZALEZ-FERNANDEZ
Boas [1] has proved the following theorems:

THEOREM A. If N, | 0 ultimately, and if f(x) =No/2+ D_r N COS 1%,
then for 0<y <1, x~7f(x) EL(0, 7)< Y_nr=\, converges.

THEOREM B. If \, =0 ultimately, and if No/2+ D Na=0 then (with
f(x) as in Theorem A) x~f(x) EL(0, 7)< Y (log n)\, converges.

The following theorem for sine series was proved by Young [6] for
v=0, by Boas [1] for 0<y <1, and by Heywood [4] for 1<y <2.

THEOREM C. If N, | 0 ultimately, and if g(x) = Y 1" Nn sin nx, then for
0=<y<2, x~7g(x) EL(0, )& D nr='\, converges.

Stronger versions for each half of Theorems A and C were proved
by Boas [1] for 0<y<1 and for 0<y =1 respectively. For 1<y<2
Heywood [4] proved Theorem C when X, =0 ultimately.

Heywood [4] also has proved the following extension of Theorems
A and B.

THEOREM D. If N\, =0 ultimately, and if No/2+ I v Na=0, then for
1<y <3 x7f(x) EL(0, m)& D_nr=I\, converges.

By using a result of Hartman and Wintner [3], Heywood [4]
showed that for y=3 and for ¥ =2, respectively, Theorem D and
Theorem C break down. On the other hand Boas and Gonzélez-Fer-
nindez [2] have proved the following theorem, proved before by
Heywood [4] for y <2.

THEOREM E. If h(x)= 2o \ux* has radius of convergence 1, if
N =0 witimately, and if vy <1 or of k<y<k-+1 (where k is a positive
integer) then provided that

o 0

=== nn—1) - (n—k+ 2N\ =0
k—1

0 1
() for vk, (1 —x)~"h(x) EL(0, 1)&> Y nr=I\, converges,
(ii) for y=Fk, (1—x)"7h(x) EL(0, 1)< > nr=(log n)\, converges.
The structure of Theorem E suggests companion theorems for the
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cosine and for the sine theorems. In this note we shall prove the fol-
lowing theorems:

THEOREM 1. If \a =0 ultimately let No/2+ 2 i N\, cos nx converge to
f(x); of for some integer j =0,

1 0 ] 0
(1) 7>\0+Z>\,.=En2>\,‘=~-=Z)n?i>\,.=o
1 1 1

then (i) for 2j+1<y<2(j+1)+1, x~7f(x) EL(0, )& > nr"I\, con-
verges, and (i) for y=2j+1, x71f(x) EL(0, ©)&> Zm“(log n)\n coOn-
verges.

THEOREM 2. If N\, 20 ultimately let Dy N, sin nx converge to g(x); if
for some integer =1,

(2 Z B, = an")\n = ... = Z w1\, = 0
1 1 1

then (i) for 21<y <2(l+1),x 7g(x) EL(0, m)&> Y _nr1\, converges, and
(ii) for v =21, x7g(x) EL(0, w)< Y nr1(log n)\, converges.

Before going into the proof of Theorem 1, let us examine the nature
of the assumption (1). We have that if > n7=!(log #)\, converges for
v =2j+1 or if _n*"!\, converges for 2j+1<y<2(j+1)+1 then the
series No/24 D8 Ny 2or #a, - -+, 2o m¥\, converge; but
doF n¥\, cos nx=(—1) @ (x), 0 <k <j, therefore (by uniform con-
vergence) f@)(x)— Y n%*\, as x—0 for 0 <k =<j. On the other hand

2j—1

ﬂ@ﬂ@+wm+§mm+m+é%ﬁww@

x% ]
+ (2j)!f( D(6),
0<60=1, and
—r+27
x1f(x) = &~1f(0) + =D (x) 4 - - - 4 ——— [ (0x)
(29)!

from which it follows that in order for x=7f(x) €L(0, 7) we must have
that

1 0 0 0
€] ?M+EM=ZWH““=ZW%=Q
1 1 1

An analogous comment applies to assumption (2) of Theorem 2.
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For the proof of Theorem 1 we need the following simple lemma:

LEMMA 1.

2 UL (< 0 for j even,
cosy-—l—l——y——-u—l—(—l)fy' { J ]
2! @CHIL= 0 for g odd.

Proor. We have that cos y=1—%"/214 - - - +(—1)iy%/(2j)!
+ . - .. For j even write

y? yll yZ]
cosy—1+"——"—+4 ... —
Y 20 4 2))!
®) p2GHD 20+

TRGron T RGEal

by repeated differentiation of the right hand side of (3) we change it
into —sin y; the process is legitimate because of the uniform con-
vergence of the differentiated series; then by integrating the last
series obtained, from 0 to v, repeatedly, legitimate by uniform con-
vergence, we get back the right hand side of (3), hence it is not posi-
tive.

For j odd write

y2 y2i y2(1’+1)
4 cosy—1+4+——...+4 = —_
W cosy 21 @)t 2G+ Dl

an analogous process yields that (4) is not negative.
We now prove Theorem 1. By using (1) we can write
(nx)? (nx)z’]

TR + (—1)i o

f(x) = i A [cos nx — 1+
1

= i )\,.Kj(nx).

By Lemma 1, for every # and x, K;(nx) is of the same sign. If j is
even we write —f(x) = D1 M\.(—K,(nx)) where —K;(nx)=0; if j is
odd we write f(x) = X_r \.K;(nx) where K;(nx)=0.

Since

(nx)2GH+D (nx)2G+2)

_— —1)+2 — -
DU+DN+(I) p@+mh+

then for x—0 and fixed #n, K;(nx)~A4x*i+D hence for 2(j+1) <v
<2(j+1)4+1 we have that for every n, x~"K;(nx) EL(0, 7).

Kjm) = (— 1)
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For the sake of definiteness suppose that j is odd, and suppose that
for n= N, X\, =0; then write

forx“’f(x)dx = f'x“‘f i MK i(nx)dx

= forx—‘r( A;_I + ‘;) K;(nx)dx.

Since for every n, x7K;(nx) EL(0, 7) then x~7 > v ' \,K;(nx)
EL(0, 7), therefore x=7f(x) EL(0, m)ex~7 ) x N\K;(nx) EL(0, ),
but since the latter is a series of positive terms then

E

a7 3 NKi(nx) € L0, 7) & D \a f 7K ;(nx)dx
) v ) .
= > ! f y ' K;(y)dy
N 0

converges.
Now if y=2j+1

f y*(?]'{"l)K](y)dy
0

f"" " 142 +y2i]d L
= vl cosy — —— ~——1logn
o T L? 2 2@ T @t
so by positivity we have that (5) converges & > % nr1(log #)\, con-
verges, which proves (i) for j odd.

Consider now the case 2j+1 <y<2(j+1)+1. Since we assume j
to be odd, K;(y) 20, therefore [;"y"K;(y)dy is 20 and T with #,

hence
> At f
N 0

Hence if (5) converges then Y _\,n"~! does so, which proves the “only
if” part of (ii) for j odd.

Nx L

Ky £ 2 aw=t [y )y,
N

n
0

Since
y? ¥ 1
K;(y) = (COSy_ 1 +z -+ (2],)!>~ (2].)!3’2’ asy — ©
then

1
~YK ; ~ —— y 1% 35 y — ©,
¥ K i(y) ant” y
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and since 1 <y—2j then [7y~"K;(y)dy < «. Now write
St [ ykiay £ 2o [TykiG)ay
N 0 N 0
so the convergence of D _A\,n"~'=> the convergence of (5), thus the
“if” part of (ii) is proved, for j odd.
For j even the proof is mutatis mutandis the same.

The proof of Theorem 2 is analogous to the proof of Theorem 1; the
role of Lemma 1 is taken here by the following lemma.

LEMMA 2.

i A A P {20 Jor &even,
s — — — — o o . — —
YTy T T s 2l — DIV 0 forlodd.

The proof of Lemma 2 is analogous to the proof of Lemma 1,
or shorter:

d y3 y?l—l
“lsiny — L (=) -2
dy[smy T + DT 1)1]
y? y?(l—l)
= — 1 = ... —1 P <
cosy =14 TV BT

by Lemma 1 the right hand side has a fixed sign, so the lemma follows
because sin y—y4 - - - +(—1)42-1/(2]—1)!is 0 at y=0.
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