ON A THEOREM BY A. E. TAYLOR

SHAUL R. FOGUEL

Let B be a complex normed linear space. It is well known [1] that, for any bounded linear functional ϕ defined on a linear subspace M of B, there exists a norm-preserving linear extension f of ϕ to B, i.e. a bounded linear functional f defined on f such that (i) $f(x) = \phi(x)$ for all f (ii) $||f||_B = ||\phi||_M$, where $||f||_B$ and $||\phi||_M$ denote the norms of bounded linear functionals f and ϕ on f and f normalized space of f is strictly convex, then f is uniquely determined by f. The purpose of this note is to show that the converse of this theorem is true, i.e. we want to prove the following

THEOREM. Let B be a complex normed linear space whose conjugate space is not strictly convex. Then there exists a bounded linear functional defined on a linear subspace of B for which a norm preserving linear extension to B is not unique.

PROOF. Let f_1 and f_2 be two bounded linear functionals on B such that (i) $f_1 \not= f_2$, (ii) $||f_1||_B = ||f_2||_B = ||(f_1 + f_2)/2||_B = 1$. Let us put $M = \{x \mid f_1(x) = f_2(x)\}$ and $\phi(x) = f_1(x) = f_2(x)$ on M. It suffices to prove that $||\phi||_M = 1$. Let z be an element of B such that $f_1(z) - f_2(z) = 1$. Then every element x of B can be uniquely expressed in the form: x = y + az, where $y \in M$ and $a = f_1(x) - f_2(x)$ is a complex number. Let $\{x_n \mid n = 1, 2, \cdots\}$ be a sequence of elements of B such that $||x_n|| = 1$ for $n = 1, 2, \cdots$ and $\lim_{n \to \infty} (f_1(x_n) + f_2(x_n))/2 = 1$. Then it is easy to see that $\lim_{n \to \infty} f_1(x_n) = \lim_{n \to \infty} f_2(x_n) = 1$. Thus, if we put $x_n = y_n + a_n z$, where $y_n \in M$ and $a_n = f_1(x_n) - f_2(x_n)$, $n = 1, 2, \cdots$, then $\lim_{n \to \infty} a_n = 0$, and hence

$$\lim_{n\to\infty} ||y_n|| = \lim_{n\to\infty} ||x_n|| = 1 \quad \text{and} \quad \lim_{n\to\infty} \phi(y_n) = \lim_{n\to\infty} f_1(y_n) = 1.$$

From this follows that $\|\phi\|_{M} \ge 1$ and hence $\|\phi\|_{M} = 1$.

References

- 1. H. F. Bohnenblust and A. Sobczyk, Extension of functionals on complex linear spaces, Bull. Amer. Math. Soc. vol. 44 (1938) pp. 91–93.
- 2. A. E. Taylor, The extension of linear functionals, Duke Math. J. vol. 5 (1939) pp. 538-547.

University of Pennsylvania

Received by the editors January 30, 1956 and, in revised form, November 30, 1956.