
FINITE MONADIC ALGEBRAS

HYMAN BASS1

Introduction. The elementary structure theory for finite Boolean

algebras is, for our purposes, summarized in the following theorem,

(see [1, p. 163], or [2, p. 344]).

(*) If B is a finite Boolean algebra, then it is completely character-

ized by the number of its elements, a number which must be of the

form 2", where n is the number of atoms of B. In this case B is faith-

fully represented as the Boolean algebra of all subsets of a set with n

elements. Moreover, B is a free Boolean algebra if and only if n is

itself of the form 2r, in which case B is free on r generators.

In particular, a finitely generated Boolean algebra is finite. Recent

work of Halmos, Tarski, and others in algebraic logic has engendered

interest in the study of more general systems in which the Boolean

structure is augmented by introducing certain additional operators.

For instance, a closure algebra A is a Boolean algebra with a unary

operator 3: .4—>A satisfying the axioms,

(0.1) 30 = 0,

(0.2) p ^ 3p,

(0.3) 3(pV q)  =   3p V  3q

and

(0.4) 3 3p =   3p

for all p and q in A. Theorem 5.2 in [4] asserts that a free closure

algebra on one free generator is infinite. We may show this directly

by exhibiting any infinite closure algebra on one generator. To do so

let X be the real interval [ — 1, 1 ]; we topologize X by designating its

family C of closed sets.

C = {<t>, [0, 0], [-1/n, 1/n], [-l/« + 1, 1/4 [-1/n, 1/n + l] |

n= 1, 2, ■ - ■ }.

Now we let A be the Boolean algebra of all subsets of X with 3p

equal to the closure of p in the topology defined by C. If q = [0, l],

(3q= [ — 1/2, l]), then the closure subalgebra of A generated by q

contains the entire infinite collection C.
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A monadic algebra is a closure algebra with the additional axiom,

(0.5) 3(3p)' = (3p)'.

In a monadic algebra 3 is called the quantifier, and its operation

quantification. An elementary discussion in [3] shows that (0.1)-(0.5)

are equivalent to the axioms: (0.1), (0.2), and

(0.6) 3(M  3?) =   3/> A  3q.

The finiteness question, answered above for Boolean and closure alge-

bras, has remained unsettled for monadic algebras, which constitute

a kind of. intermediate case. A monadic algebra A is said to be free

on the set of generators GCA if (i) G generates A, and (ii) any map

/o of G into a monadic algebra B can be extended to a monadic homo-

morphism f:A—>B. An immediate consequence of this definition is

that A is determined up to monadic isomorphism by the cardinality

of G. Moreover, any monadic algebra with a generating set of car-

dinality at most that of G would be a homomorphic image of such an

A.
The principal result obtained here is a constructive description of

all finitely generated free monadic algebras which, in particular, ex-

hibits their finite cardinalities as a function of the number of free

generators. This, of course, settles the finiteness question raised

above. For completeness the construction includes a proof of freeness

directly from the definition, and in the process a few mildly interest-

ing results on monadic and Boolean homomorphisms are obtained

which have reference to the representation theory developed by

Halmos in [3].2

We now proceed to define a few terms. If A is a Boolean algebra

and p is in A, then p is said to be an atom of A if py^O, and if every

subelement of p is either 0 or p. The following notation will also be

convenient.
pl = p,        p-1 = p'(=l - p).

Ii o-= {pi, ■ ■ ■ , pn} is a finite subset of A, we say that a is a partition

of p if (i) piApj = 0 for i^j, and (ii) pAJ ■ ■ ■ \Jpn = p. The nonzero

elements of <r are evidently distinct, and if p = l they are just the

atoms of the Boolean subalgebra of A generated by cr.

1. Monadic forms and formal identities. It will now be convenient

to introduce certain formal monadic expressions which will play a

role analogous to that of polynomial forms in classical algebra. Let

2 The author is indebted to Professor Halmos for suggestion of the problem and for

much valuable criticism.
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A= {— 1, l}, and let En = AX - - - XA (n times). For e in En, we

denote by e, the ith coordinate of e, and for each i we write El

= {e'n\En\ei=l},i=l, • • • ,n. Regard now the symbols Xi, - - - , xn

as n ordered monadic variables, let X denote the vector (xi, ■ ■ ■ , x„),

3X the vector (3xi, ■ ■ ■ , 3x„), and, for each such X, let (X) be

the least class of finite sequences containing the one-term sequences

(xt) and closed under the operations of prefixing 3, infixing A, and

suffixing _1. We now define the maps,

\X:E»->(X)

by \x(e) =Xi'A ■ ■ • Axnn, for all e in En, and

ux.i-Eni->(X)

by p.x,i(e) =XiAA3x(e), for all e in E", i= 1, • • • , n. We first observe:

(1.1) Ifxi, • • • , xn generate a Boolean algebra B, then {Xx(e)|ein

En) is a partition of 1 whose nonzero elements are just the atoms of B

(see, e.g., [2, p. 344]).

This apparatus is designed both for abbreviation of some unwieldy

notation, and to facilitate the proofs of some useful formal results, to

which we now proceed. If A is a monadic algebra, then the range of

3, 3(A), is a Boolean subalgebra of A ([3, Theorem 5]) on which, by

(0.4), 3 induces the identity map. We have, therefore, for any e in

En, 3(k3x(e)) =A3x(e). Now using this together with (0.6), we ob-

tain for each e in E", 3(p,x,i(e))= 3x,AX3x(e), and so, since ej=l

for e in E",

(1.2) 3(ux.i(e)) =\3X(e).

Suppose we consider now a Boolean algebra B generated by the set

{x,-, Xi\i=l, ■ ■ ■ ,n], under the assumptions, (i) }xi, • • • , xn\ is a

partition of 1, and (ii) Xi^x,-, i=l, ■ ■ ■ , n. By (1.1), the atoms of B

are all the nonzero elements of the form,

(1.3) \x(d)A\x(e)

for d and e in En. By (i), (1.3) can be nonzero only if, for precisely

one i, di=l, and, by (ii), it can be nonzero in this case only if also

e» = l for the same i. By disjointedness, we may then simply delete

the terms xj1, for JT^i, and write the resulting expression as XiAXx(e),

where now e must be in E" (and, of course, X=(xi, ■ - - , xn)). Now

to summarize.

Lemma 1. If a Boolean algebra B is generated by the set {x{, xt\i

= 1, • • • , n) satisfying (i) and (ii) above, then {xiAXjf(e)|e is in £",

i=l, • • • , n} is a partition of 1 containing the atoms of B.
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Observe that if B is a monadic algebra, and if Xi = 3Xi, then the

resulting partition is just {px,i(e)\e is in E", i = l, ■ ■ ■ , n}. More-

over, in any finite Boolean algebra each element is (uniquely) the

supremum of the atoms it contains. Make now the assumption that

Corollary 1. Xgx(e) = Vipx,i(e), where the supremum is extended

over all ifor which e,= l. We write this Xa?(e) = Vji|e,=ij px,i(e).

Proof. If et is 1, then px,%(e) =x,AX3x(e) ^Xgx(e), and it can be

easily checked that the other atoms of B (i.e. pxj(d) where e^dCE")

are disjoint from \3x(e).

Corollary 2. x, = Veeisi" px,i(e).

Proof. Apply the same procedure as above.

For convenience we now choose, for each integer r >0, some definite

enumeration {ek\k = l, ■ ■ ■ , 2'} of Er, which shall henceforth re-

main fixed. If A is a monadic algebra generated by elements pi, ■ ■ ■ ,pr,

then we write P=(pi, ■ ■ ■ , pr), and \P = (\P(el), • • • , \p(en)),

where n = 2r, and we let A 0 be the Boolean subalgebra of A generated

by {\P(ek), 3\P(ek)\k = l, ■ ■ • , n}. Evidently pi, • • • , pr are in A0.

Moreover, {\P(eh)\k = l, • • • , n] is a partition of 1, so Lemma 1

applies and {p\p,i(e) \ e is in E", i=l, • • • , n} is a partition of 1 con-

taining the atoms of ^40. By (1.2), 3(p^Pti(e)) =\3\p(e)CA0; i.e.,

3 maps the atoms of .4o into ^40. Hence, by (0.3), 3(A0)CAo, so ^40

is already a monadic subalgebra of A. Since ^4o contains a monadic

generating set for A we have A0=A.

Theorem 1. If pi, ■ ■ ■ , pr generate a monadic algebra A, then

{p\p,i(e)\e is in E", i=l, ■ • • , n] is a partition of 1 containing the

atoms of A.

Corollary 3. A monadic algebra with r generators has at most

n2<.n-i) = 2r2W-u atoms (and hence at most 2[2r2(2 _1)l elements).

Corollary 3 shows the significance of Theorem 1 (although the lat-

ter has other applications in the sequel); in particular, it settles the

finiteness question referred to in the introduction.

2. Homomorphism theorems. Suppose A and B are Boolean alge-

bras, A finite, with <r= {pi, • • ■ , pn} and t = {h, • • ■ , tn] partitions

of 1 in A and B, respectively. If pi^O, write pi = pn\J • • • Vpimt as

a supremum of atoms of A ; if pt = 0, then define mt = 1. Consider now

the map/o: a—»r defined by fo(p%) =h.

Lemma 2. The map fo can be extended to a Boolean homomorphism
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/: A-^B if and only if t, = 0 whenever pi = 0. In this case, there are at

least mi • • ■ mn possible extensions /, and precisely this many when B

is finite and t contains the atoms of B.

Proof. The necessity is an immediate consequence of the fact that

/(0) =0. Suppose, conversely, that tt = 0 whenever pi = 0, and assume

first that cr contains all the atoms of A: i.e. m, = 1 for all i. Then de-

fine f:A^>B by f(phV ■ • ■ Vpik)=ti1V ■ ■ ■ Vtik. This / is well
defined since every element of A is uniquely a supremum of atoms,

and if extra £,'s which all equal zero are thrown in on the left, the

corresponding t/s, by hypothesis, contribute nothing new on the

right. Moreover, / clearly extends/0 and commutes with all suprema.

That / commutes with complementation follows from the fact that

the complement of a supremum of elements in a partition of 1 is just

the supremum of the remaining elements in that partition. Therefore,

/ is the desired homomorphism.

The general case reduces to this one by considering the new parti-

tions cr'= \pij\j = l, ■ • • , w,-;t = l, ■ ■ • ,n\ andr' = {tij\j = l, • • ■ ,

mi; i=l, ■ ■ ■ , n\ where for each i=l, • • ■ , n, tijt=ti and ttj = 0 for

JT^ju l^j^mt, and j, is an arbitrary integer between 1 and m,- for

each i. We are simply refining cr to an atomic partition and compensa-

tion in r by padding zeros in suitable places. The conditions for the

first part of the proof are now fulfilled, and, for the / so obtained,

f(Pi)=f(PnV ■ • • Vpini)=*,iV • ■ • \Jtini = ti=fo(pi). The indicated
freedom in the choice of the ji allows already «,-••■ mn possible

ways to extend /o, and any two such clearly yield distinct f's. That

these exhaust the possibilities when B is finite and r contains the

atoms of B follows from the fact that/ must preserve order and dis-

jointedness. Namely, f(pij) must be either 0 or ti since f(pij) ^f(pi)

= ti, an atom (excluding the trivial case /i = 0). By disjointedness, at

most one pn can map into ti and, moreover, at least one of them

must if we are to have f(p/) equal to ti and not 0; this special element

corresponds to the pni above.

Corollary 4. A homomorphism of a finite Boolean algebra A maps

the atoms of A one-to-one onto a partition of 1, and conversely, any such

map on the atoms of A extends uniquely to a Boolean homomorphism.

We are now prepared to prove an extension theorem which is essen-

tial in the construction in III. Let A and B be monadic algebras

generated by o={pi, • • • , pn) and t= [h, ■ ■ • , tr), respectively.

Consistently with the notation in Theorem 1, we write P

= (pi, ■ ■ ■ , Pr), T=(tu ■ ■ ■ , tr), XP = (Xp(e1), • • • , Xp(e")), and

XP=(Xr(e1), • • • , Xr(en)), where, recall, n = 2r.
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Theorem 2. The map fB: o—^t defined by fo(pi)=ti can be extended

to a monadic homomorphism f: A—>B if and only if p\T.i(e) =0 when-

ever p\p,i(e) =0, for all e in E", t=l, • • • , n.

Proof. Necessity is trivial since p\p,i(e) and p\r,i(e) have the

same formal expression in terms of a and r, respectively, and we

must have/(0) =0. Conversely, if we define,

/o: {n\p,i(e) | e £ £,-, * = 1, • • • , «} —> {p\r,i(e) \ e C Et,

i = I, ■ ■ ■ , n}

by fo (p\p.i(e))=p\T,i(e), then, by Theorem 1, Lemma 2 applies to

/o', which may therefore be extended to a Boolean homomorphism

/: A-+B by extending/0' over suprema of atoms. To show that/ is

monadic it suffices, by (0.3), to show that/ commutes with 3 on

atoms of A. By (1.2) and Corollary 1, each applied first in A and then

in B,

f(3pXP,i(e)) =/(X3xpW) =/(     A     Mxp,i(e))
\UK-i1 /

=      V     n\r,i(e) = X3xr(e)

=  3/AT,i(e) =  3f(u\P,i(e)).

It remains only to show that / extends our original /o. Now pj

= VVe.E/Xi>(e*), and tj= WeE/Xr(e*). It therefore suffices to show

that f(kP(ek)) =~KT(ek), k = l, ■ ■ ■ , n. By Corollary 2, where X is re-

placed here by \P and XT successively, we have Xp(ek) = VeeEknp\p,k(e)

and Xr(e*) = VeeEk" P\T.k(e), and hence,

/(Xp(6*)) =     V f(nxp,k(e)) =     V  txxT,k(e) = XT(e*).

We digress here a moment to recall a result in [3 ] that will be used

several times in the sequel. A Boolean subalgebra B of a Boolean alge-

bra A is said to be relatively complete in A if for every p in A the set

B(p) = {q\qCB, q^p} has an infimum, l\B(p), in 5. In particular,

any finite, or, more generally, complete subalgebra B is always rela-

tively complete. Let Q be the set of all quantifiers on A, and let R

be the set of all relatively complete subalgebras of A. For each 3 in

Q define/(3)= 3(v4), and for each B in R define g(B): A-+A by

g(B)p = t\B(p). The result we quote is the following:

(**) For/and g above, f(Q) =R, g(R)=Q, andf=g~K Thus, ii A
is a monadic algebra and p is in A, then

3p = /\{q\qC  3(A), p^q},
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and so 3 is clearly order preserving. In particular, if A is finite, then

3 maps each atom of A onto that unique atom of 3(A) above it. In

general, when 3(A) is finite, 3 maps an element onto the supremum

of those atoms of 3(A) that the given element intersects nontrivially.

To resume, we shall now use Lemma 2 again to obtain a result bear-

ing on Halmos' representation theory in [3]. If A is a monadic alge-

bra a constant, c:A^>A, is an idempotent endomorphism such that

c(A) = 3(A). Then c is said to be a witness for p in A if cp = 3p, and

we call A rich if every pm A has a witness. Halmos proves his repre-

sentation theorem ([3, Theorem 12]) directly only for rich monadic

algebras, so it is of some interest to know whether certain classes of

monadic algebras are rich. He gives reference to an example of a

monadic algebra with no constants at all.

Let A be a finite monadic algebra, and let B = 3(A). If t

= {ti, ■ • ■ , tn} is the atomic partition of 1 in B, let o={pij\j

= 1, • • • , w,-; i = l, ■ • • ,n\ be the atomic partition of 1 in A, where

o~i= {pn, ■ • ■ , pimi] is the atomic partition of ti as an element of A.

In this way we associate with A the set X(A) =X"=1 at, a set with

N(A)=mi - • • mn elements. N(A) is clearly an algebraic invariant

of A. Now if x=(pijv ■ • ■ , pnjj is any element of X(A), we may

associate with it the Boolean endomorphism, cx: A-+B(EA) which,

by Corollary 4, exists and is uniquely defined by

. (0 if j * ji,
cApij) =<.,.. . .

{ti if j = ji, j = 1, ■ • • , mi; i = 1, ■ ■ - , n.

Then cx(U)=cx(pn)\/ • • ■ \Jcx(pimi)=ti, so by the uniqueness in

Corollary 4, cx induces the identity map in B, and hence also,

cx(A)=B; i.e., cx is a constant. Conversely, every constant c deter-

mines an element xc of X(A) such that cXc = c. To see this view r as a

partition of 1 in both A and in B, and then apply the last part of the

proof of Lemma 2 to show that c(ptj)=ti for precisely one pij,

l^j^ni, say pijf. Then xc = (pu1, ■ ■ • , pnjj is clearly the desired

element.

Theorem 3. A finite monadic algebra A is rich. Moreover, there is a

natural one-to-one correspondence between X(A) and the N(A) con-

stants of A. Given any constant c of A, there is an element p in A for

which c is the only witness.

Proof. It remains only to show that (i) every p in A has a witness

c, and (ii) every constant c is required by some p in A.

(i) p = p A 1 = P A (V*0 = V(p A U).i i
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Now we simply choose x = (pijv • • • , pnj„) so that whenever pAti^O,

then pij^pAti, and then cx is a witness for p. For then

cx(p) = V        ti,
!iipA(iFsol

but this is just 3p, by (**).

(ii) Given c, xc = (piji, • • • , pnsn), let p=Vipij(. Then xc satisfies

the condition prescribed above in (i), so c is a witness for p. Suppose d

is also a witness for p. d(pa) is either 0 or ti as we saw in the discus-

sion preceding this theorem. By (**) 1 = 3p, so,

1 = V        U
U\d(pij.)~ti)

and therefore no t, may be omitted in this supremum. Finally, then,

Xd=(PlJi,  •  ■  ■ , Pnjn) =xc, so d = c.

Before proceeding to the main result I might remark that many of

the results of this section extend with no essential change in tech-

nique to complete atomic algebras. Moreover, using a generalization

of the above methods, where the notion of atom is replaced by that

of maximal filter, one can prove that any monadic algebra A which

is a countable ascending union of monadic subalgebras, An, such that

3(An) is finite for all n, is rich. This class includes, in particular, all

A for which 3(^4) is finite, and also, by Corollary 3, all countable^.3

3. Finitely generated free monadic algebras. Given any integer

r>0, let n = 2", m = 2(-n~1), and choose n pairwise disjoint sets S,,

i = l, • • ■ , n, each having m elements. In each St- we may, by (*),

select n — l subsets Sa, l^j^n, jj^i, which freely generate the

Boolean algebra Bi of all subsets of Si. Now {5,| i = 1, • • • , n} is a

partition (in the usual set-theoretic sense) of S = U"_1 S,. Applying

(*) again, let R= {1, • • • , n] and choose r subsets, Ru ■ ■ ■ , Rr of R

that freely generate the Boolean algebra of all subsets of R. Finally,

we let A be the Boolean algebra of all subsets of S, and we write

pi =   U  Sj] i = 1, • • • , r.

A will be the main object of interest here, for our program is to intro-

duce a quantifier on A and then to prove that the pi just defined freely

generate A. Ii Ao is the Boolean subalgebra generated by

{pi, • ■ • , pr}, then clearly the atoms of A0 are just {Si, • ■ ■ , Sn}.

It is no loss to assume the Ri indexed so that \p(ek) =Sk,k = l, ■ • • ,n,

where, of course, P = (pi, • • ■ , pr). That is to say,

3 This observation is due to Professor Halmos.
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(3.1) XP = (Si, • • • , Sn).

(3.2) We observe, before proceeding, that the algebra A has evi-

dently nm atoms, (one element subsets of S).

Now write,

Si = Si^J      U      Sji, i = 1, - - - , n,

and, using (**), define 3 to be the quantifier induced by the (rela-

tively complete) subalgebra B generated by {Si, • • • , Sn}. We write

XP=(Si, • • • , S„) and note that S,CS,- for each i. Let Ai be the

Boolean subalgebra generated by [S,, S,| i= 1, •••,«}. By Lemma

1 we have that

(3.3)     {SiC\ Avp(e) | e E E",   i = 1, ■ • • ,   n\    is   a   partition   of   1

containing the atoms of Ai.

Lemma 3. For all e in El, SiHXip(e) ^c/>, i = l, ■ ■ ■ , n.

Proof. First expand.

n

SiC\\rP(e) = SiC\ [s? r\- ■ -r\s:\= n (s.-nsT).
3=1

Now Sj = Sj\Jiskin,k^j S/cj, and S^Skj is S,y or </> according as k=i

or kT^i, (for JT^i), so Sir\Sj = SiC\Sij, and, similarly, SiC\SJl

= Si(~\SijX. For e in £?, et is 1, and Sir\Si = Si, so in the above expan-

sion,

Si r\ Ax?(e) = str\    n    (Si r\ s$ = s,- n    n    st
l^J^w.jVi l£JSn,J7±i

But this is just a typical atom (hence one element subset) of Bt.

By this lemma none of the nm subsets in the collection

\SiP\\rp(e)\eEEni,i=l, ■ • • , n) are empty, and, by (3.3), they are

pairwise disjoint. Hence, by (3.2) and a simple application of the

"pigeon-hole principle" the above collection must consist precisely of

the set of all atoms of A.

Lemma 4. At=A.

Lemma 5. 3Sk = Sk, k = l, ■ • • , n; i.e., XP= 3XP.

Proof. By (**) 3Sk is the supremum of the atoms of B that Sk

intersects nontrivially. The atoms of B are {X^e) | eEE"}. Lemma 3

shows that those atoms with e in El intersect Sk, and so Sk

= UeeE"ATp(e)E3Sk. However, SkESkEB, so Sk is in B(SK), and
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hence 3Sk = r\B(Sk)CSk.

We now gather our results. By Theorem 1, Lemma 5, and Lemma 4,

{pi, ■ ■ ■ , pr} is a monadic generating set for A. Moreover, by

Lemma 3 and Lemma 5,

V\p,i(e) = Si O Xxp(e) 5^ d>

ior any e in E", i = l, ■ • • , n. Therefore, the hypothesis of Theorem 2

is vacuously satisfied for any map/o of {pi, ■ • ■ , pr} into some other

monadic algebra. We have thus completed the construction.

Theorem 4. The monadic algebra A above is free on the r generators

{pi, ■ ■ • , pr}. A has nm atoms, and so has
r C2r—1}

2»m   _   212 2 1

elements.

We mention, without proof, a few of the properties of this algebra,

A. First, B= 3(A) is a Boolean algebra with 2" — 1 atoms (so is not

free). Further, for each k = 1, • • • , n there are Cn,k atoms of B which

contain precisely k atoms of A. Therefore, by Theorem 3, A has

N(A) = JjLi kCn* constants.

As a final remark, we might state the characterization of finite

monadic algebras analogous to that given for Boolean algebras at the

outset of this paper.

Theorem 5. If A is a finite monadic algebra, then A is determined

up to isomorphism by the number n and the additive partition, n

= «i+ ■ • • +nk, of n, where n is the number of atoms of A, k the num-

ber of atoms of 3(A), and, under some enumeration of the latter, the

ith atom of 3(A) contains ni atoms of A, i=l, • • ■ , k.

Proof. Let Si, ■ ■ ■ , Sk be k disjoint sets such that Si has «,• ele-

ments, and let B be the monadic algebra of all subsets of 5

= SiU • ■ ■ VJSic, where the quantifier is that induced by the Boolean

subalgebra generated by {Si, ■ • • , Sk}, (see (**)). Now map the set

.S (of all the n atoms of B) one-to-one onto the atoms of A in such a

way that St maps onto the atoms of A below the ith atom of 3(^4).

By Corollary 4, this map defines a Boolean homomorphism from B

to A which, by (**) again is monadic. This monadic homomorphism is

also evidently one-to-one and onto, so the proof is complete.
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ON HARMONIC MAPPINGS1

JOHANNES C. C. NITSCHE

1. Suppose that the functions x = x(a, P), y = y(a, P) define a one-

to-one harmonic mapping of the unit disc T in the a, /3-plane (a+iP

= 7) onto a convex domain C in the x, y-plane (x+iy = z). The origin

is assumed to be fixed. Introducing two functions F(y) and G(y)

which, in L, depend analytically upon the variable y we may write

3 = Re F(y)+i Re G(y). The purpose of the present paper is (i) to

give a new proof of a lemma which, in a special form, was first used

by T. Rado [13] and which was proved in general by L. Bers (see

[2, Lemma 3.3]),2 (ii) to derive an improved value for an important

constant first introduced by E. Heinz [3]. The proofs will be very

simple due to the fact that there is a close connection between univa-

lent harmonic mappings and the minimal surface equation (see e.g.

[ll, footnote 2]) and also the differential equation

2

(1) <t>XX<l>yy  —   4>xy   =   1.

The connection with the latter equation was exploited by K. Joergens

[8] for the study of the solutions of (1). One can, however, proceed

one step further by introducing a mapping which was invented by

H. Lewy [10] for Monge-Ampere equations.

2. Let s = Re/7(7)-riReG(7) be a harmonic mapping with the

properties mentioned above. Then the expression
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1 This paper was prepared under Contract N onr-710(16) between the Univer-

sity of Minnesota and the Office of Naval Research.

2 It has been shown by H. Hopf (cf. [7, p. 133 and 5, pp. 91-92]) that the com-

bination of Heinz's inequality with Schwarz's lemma yields a sharper result.


