ON THE THEOREM OF GLEASON AND MARSH1

NEAL ZIERLER²

Let K be a field with a finite number q of elements and let α be the mapping of K[x] in itself that assigns

$$f^{\alpha}(x) = \sum_{i=0}^{n} f_i x^{q^{i}-1}$$

as image to

$$f(x) = \sum_{i=0}^{n} f_i x^i.$$

The *order* of a nonzero element a of a finite field is the smallest of the positive integers j for which $a^j = 1$. If f(x) is irreducible over K, then all of its roots are of the same order, for given any two roots of f lying in a finite extension F of K there is always an automorphism of F mapping one on the other. We may therefore define the order of the irreducible polynomial f to be the order of any one of its roots. The purpose of this note is to establish the following generalization of the theorem of Gleason and Marsh.³

THEOREM. Let f be an irreducible member of K[x]. Then the degree of every irreducible factor of f^{α} is equal to the order of f.

PROOF. Let β be the mapping of K[x] in itself such that $g^{\beta}(x) = xg^{\alpha}(x) = \sum_{i=0}^{n} g_{i}x^{q^{i}}$. Clearly β is linear over K; that is, if g and h are in K[x] and a and b are in K then $(ag+bh)^{\beta} = ag^{\beta} + bh^{\beta}$.

are in K[x] and a and b are in K then $(ag+bh)^{\beta}=ag^{\beta}+bh^{\beta}$. Let $g \in K[x]$. Then $(xg(x))^{\beta}=\sum g_i x^{q^{i+1}}=(\sum g_i x^{q^i})^q=(g^{\beta}(x))^q$. That is,

$$(xg)^{\beta} = g^{\beta q}.$$

Let f, g and a be in K[x] and suppose g = af. Then $g^{\beta}(x) = (\sum a_i x^i f(x))^{\beta} = \sum a_i (x^i f(x))^{\beta} = \sum a_i (f^{\beta}(x))^{q^i}$ by (1). Thus, $f^{\beta} | g^{\beta}$ and so $f^{\alpha} | g^{\alpha}$. This proves

(2)
$$f \mid g \text{ implies } f^{\alpha} \mid g^{\alpha}.$$

Received by the editors August 12, 1957.

¹ The research in this document was supported jointly by the Army, Navy, and Air Force under contract with the Massachusetts Institute of Technology.

² Staff Member, Lincoln Laboratory, Massachusetts Institute of Technology.

³ A. A. Albert, Fundamental concepts of higher algebra, University of Chicago Press, 1956, p. 132.

Now let f be irreducible, let g be arbitrary and let h be a factor of f^{α} of positive degree. We shall show that

(3)
$$h \mid g^{\alpha} \text{ implies } f \mid g.$$

Let $A = \{b \in K[x]: h | b^{\alpha}\}$. If $b \in A$ and $a \in K[x]$, $b^{\alpha} | (ab)^{\alpha}$ by (2) and so $ab \in A$. It follows easily that A is an ideal containing f but not 1 in K[x]. Hence, since f is irreducible and K[x] is a principal ideal domain, A = (f) and (3) is established.

Now let f be irreducible of order r and let d be the degree of an irreducible factor h of f^{α} . Then $f \mid 1-x^{r}$ and it follows from (2) that $h \mid 1-x^{q^{r}-1}$. Hence a splitting field of h, which has q^{d} elements, may be regarded as a subfield of a splitting field of $1-x^{q^{r}-1}$, which has q^{r} elements, and so $d \mid r$. On the other hand, $h \mid 1-x^{q^{d}-1}$ implies $f \mid 1-x^{d}$ by (3) and hence $r \mid d$. It follows now that d=r and the proof of the theorem is complete.

COROLLARY (GLEASON-MARSH). Let f be an irreducible polynomial of degree n over K. The order of f is q^n-1 if and only if f^{α} is irreducible.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY