
PREFERRED OPTIMAL STRATEGIES

R. C. BUCK1

Let r be the normalized two person zero sum game defined by a

pay-off function M(x, y), for x£A, yE:B. If A and B are compact

convex sets in a finite dimensional space, and M is bilinear, then T is

strictly determined. Then V has a value v(T), and the players have

optimal strategy sets AiC A, Bi C B, such that M(x, yi) j£ v(Y)

^M(xi, y) for any choices of x(E.A, XiG^4i, yG-B, yi£5i. We may

denote the game T by (M, A, B). (See [l; 2].)

This note is concerned with games in which the first player Pi has

more than one optimal strategy. Since At is convex, there are then

an infinite number. Against an optimal strategy of P2, none of these

will achieve more than v(T). However, if P2 should play nonoptimally,

Pi might obtain more than zi(r), and the outcome might depend upon

which optimal strategy from the set Ai he chooses. In many applica-

tions of game theory, it is desirable to have a systematic procedure

for choosing a preferred strategy x in Ai which will take advantage

of the possibility of error (nonintelligent action) on the part of the

second player. Such a procedure will be given in this note; the result-

ing preferred optimal strategy is unique, up to equivalence, when the

set B is a polyhedron.

Two first player strategies, x' and x", are said to be equivalent

for the same T if M(x', y) =M(x", y) for all y£.B. When B is poly-

hedral, it has only a finite number of extreme points ir. These we call

"pure" strategies for P2. Any y£2? is then a finite convex combina-

tion of pure strategies. We divide the pure strategies of the second

player into two classes. A pure strategy ir is good if it is present in

at least one optimal P2 strategy (i.e. if it occurs with nonzero coeffi-

cient in an optimal strategy). All other pure strategies are called

poor. The dichotomy can also be made analytically. If ir is a good pure

strategy, then M(xi, ir) = v(T) for every optimal Xi£.4i; if t is a poor

pure strategy, then there is at least one Xi^Ai with M(xi, ir)>v(T).

Let B(1) be the closed convex hull of the set of poor pure strategies

of P2.

Theorem 1. The following statements are equivalent: (i) 5(1) is void,

(ii) Bi contains a point interior to B, (iii) all the strategies in Ai are

equivalent.
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Let JB* be the set of all points y(EB such that M(x, y) =v(T) for

every optimal x(£Ai. This set is convex and contains Bi, but is dis-

joint from 5(1). Moreover, any line segment in B which contains a

point of B^ in its interior, lies wholly in B*; thus, 5* is the convex

hull of the set of good pure strategies. When (ii) holds, B =B*. When

(ii) fails, 5* is the face of B containing Bi, and B?±B*. Finally, it is

immediate that (i) and (iii) are each equivalent to B=B*.

Construct a new game, Ti= (M,Ai, Bm). To this, we may apply

the same procedure, generating a sequence of games Yi, r2, Tg • • •

with Tn=(M, An, B(B)>. We have ADAiDA,D • • • and BDB^
35(20 • • • ; A n+i is the set of optimal strategies for Pi in the game

r„, and B(n+1) is the convex hull of the poor pure strategies for Pt in

r„. Moreover, the vertices of _B(n+1) form a proper subset of those of

J3<B>. When B is polyhedral, having a finite number of vertices, we

must reach an integer N such that B(N+1) is void. In the game Yn,

Pt will have no poor pure strategies. By Theorem 1, then, all of the

optimal strategies x in the set A^ = An+i are then equivalent in the

game Ttf.

Theorem 2. The strategies x in Ax are all equivalent in Y.

Let x(ElAx. Then, x(E.An for any n. If w is any extreme point of B

which is a good strategy for P2 in r„, then M(x, ir)=v(Tn). Every

extreme point ir is good in V, or in one of the games Fj. Thus, M(x, w)

= M(x, it), ior every tt and any choice of x<E.Ax. Since B is the

convex hull of the points w, M(x, y) =M(x, y) for every y(E.B, and

any choice of xtEA*,. Thus, all of the points of the set Ax are equiva-

lent in r.

By this process, then, we have arrived at a strategy x which is

optimal in each of the games T, Ti, T2, • • • , and which (when B is

polyhedral) is unique, up to equivalence. When B is not polyhedral,

the sequence B^n) may not terminate. However, the strategies in the

set A„ still have the desirable properties described above, and are

preferred optimal strategies.

We give a simple illustration. Consider the rectangular game whose

(discrete) pay off matrix is
"6    15    8    5"

W =    2    7   3    4    4   .

.61745.

If T is the mixed game derived from W, so that A is a triangle and B

a 4-simplex, then v(T) =4, Pi has two basic (extreme) optimal strate-

gies x' = (1/2, 1/2, 0), x" = (0, 1/2, 1/2) and P2 has a unique optimal
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strategy y = (3/5, 2/5, 0, 0, 0). The poor pure strategies for P2 are

columns 3, 4 and 5.

Proceeding as above, the game Ti is then the mixed game obtained

from the rectangular matrix

w = \* 6 9/2l
|_5    4    9/2J

This was obtained by computing [x', x"]W, and deleting from this

matrix the first two columns. The value of Ti is v(Fi) =9/2, and Pi

has the optimal strategies (1/2, 1/2) and (1/4, 3/4). The last column

is optimal for P2. Repeating the process, T2 is the mixed game ob-

tained from

r 9/2      5 1
W =

.19/2    9/2J

We see that ti(r2) = 14/3, that Pi has a unique optimal strategy

(1/3, 2/3), and that 5(2) is empty. Retracing our steps, we arrive at

# = (1/6, 1/2, 1/3) which is the unique preferred optimal strategy.

Note that its pay-off is xW=(i, 4, 14/3, 14/3, 9/2).
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