
THE CONVEX HULL OF SUB-PERMUTATION MATRICES1

N. S. MENDELSOHN AND A. L. DULMAGE

1. Introduction. A combinatorial theorem [l; 3] usually referred to

as "the marriage problem" or "the problem of distinct representa-

tives" has the following matrix formulation; the convex hull of the

set of all n by n permutation matrices is the set of all n by n doubly

stochastic matrices. In this note the above theorem is generalized.

The following notation and definitions will be used. A will repre-

sent an n by n matrix with non-negative real entries a,-,-; 5 will repre-

sent the sum of all entries of A, S= 5Z;X)y °»*> -^* w'" represent the

sum of the entries in the ith row and Cj will represent the sum of

the entries in the jth column; M will represent the largest row or

column sum of A, M = max (Ri, Cj). Also used will be the concept of

a sub-permutation matrix of rank r. By this is meant a matrix P

with the following properties: (1) each entry of P is either 1 or 0;

(2) each row and each column of P contains at most one 1; (3) P con-

tains exactly r entries equal to 1. In terms of this notation the theorem

quoted above becomes; a matrix A lies in the convex hull of the set

of all permutation matrices if and only if M =1 and S = n. In [2] the

authors of the present note obtain sufficient conditions in order that

a matrix A with non-negative entries contain nonzero entries in the

places occupied by 1 in a permutation matrix of rank r. In this note

necessary and sufficient conditions are given in order that a matrix

A lie in the convex hull of the sub-permutation matrices of rank

n — i (i = 0, 1, 2, ■ ■ ■ , n — l).

2. The Theorem. Let A be an n by n matrix whose entries are non-

negative real numbers. A necessary and sufficient condition that A lie

in the convex hull of all sub-permutation matrices of rank n — i is that

S = n — i and (n — i)/n^M^l.

Proof. The necessity is obtained as follows. Let A = "£,, ajPj

where ay2:0, zliiai=^ an<^ Pj ls a sub-permutation matrix of rank

n — i. Then each matrix <x,-P,- has the sum of all its entries equal to

(n — i)aj and each row or column sum has the value a3- or 0. Hence

S=(n—i)^jaj = (n — i) and M^ y„«, = l. Also since n — i = S

= X)y Rjf^nM, (n — i)/n^M. Hence S = n — i and (n — i)/n^M^l.

To obtain the sufficiency we note that if S = n — i and (n — i)/n
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gM ^ 1 then ^Rj = ^Cy = n - i. Also the numbers 1 - Ru

1 —Rt, • ■ ■ , l—Rn are non-negative and at least one of these is posi-

tive if i>0. For if all of l-2?i, l-Ri, ■ ■ ■ , l-Rn were 0 then

Rj = l =M ior all j so that S = n a contradiction. The matrix A is

now augmented to a matrix A* by the addition of i rows and i col-

umns as follows: a*=a„ if r and s are both less than or equal to n;

a* = 0 if r and s are both greater than n; a*n+t = (l—R,)/i ior

r = l,2, ■ ■ ■ ,n;t = 1,2, ■ ■ ■ ,i; a*+Utt = (l—Cv)/i forw =1, 2, • • • , i;

v = l, 2, ■ ■ ■ , n. The matrix A* is a doubly stochastic n+i by n+i

matrix with zeros in the lower right hand i by i block. By the theorem

quoted in the introduction A* = Y,arP* where argtO, '%2ar=l and

P* is an n+i by n+i permutation matrix. Furthermore, each P* has

an i by i block of zeros in its lower right corner. Hence P* has 2i

entries equal to 1 in its last i rows and i columns. If Pr is the n by n

matrix in the upper left hand corner of P*, Pr contains (n+i)—2i

= n — i ones. Hence Pr, is a sub-permutation matrix of rank n — i. Also

A = E«rPr.
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