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1. We shall consider a generalization of Liouville's Theorem for

functions which are solutions of the parabolic equation

du(x, t)        ™ d2u(x, t)       ™      du(x, t)
(1) - =   2^ <Hj-r- 2^ °i-1" cu(x, t).

dl i,j=i dXidXj i=i dXi

The coefficients an, bi and c are real constants, (a,,-) is a positive

matrix and the solutions u(x, t) are defined and nonnegative in the

half  space   — co </:£0,   denoted   by  D.   We   use  the  notation   x

= (xi, • • •, xn), \x\ =(Y,x\y12.

It will be shown later on, that the nontrivial solutions of (1) are

positive in the interior of D and that

log w(0, t)
(2) lim-exists.

!->- oo /

The growth properties of these solutions will be studied in cones Da:

|x|:ga|/|,f<0 with axis x = 0 and opening 2a. The natural general-

ization of Liouville's Theorem (see, for instance, [l]) is equivalent

to the statement that the nonconstant solutions of (1) cannot be

bounded in D, which may be considered as a cone Da with a = oo.

We can now state the main result of this paper.

Theorem 1. Let u(x, t) be a nontrivial nonnegative solution of (1) in

the half space D. Denote

(3) hm   - = c + y.
t—,— oo /

If c+7 = 0 and if y > 0, then u(x, t) is unbounded in Da for all

(4) a>(c + y)(l^y + -b2^     - - bj    ,

where b = (Y,b2i)in.

The assumption  c+y^O excludes the trivial case c+y<0,  in
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which u(0, t) is unbounded. The assumption 7>0 is sharp in the

sense that if 7 = 0, u may be bounded in D. As an example, take

u(x, t)=eet where c>0; u(x, t) satisfies du/dt=Au+cu, but it is

bounded in D. Note finally, that the assumption y>0 excludes con-

stant (?^0) solutions. The proof of Theorem 1 is given in the next

two sections.

2.  In this section we shall consider some growth properties of a

special class of nontrivial solutions of the heat equation

dw(x, t)
(5)-—- = Aw(x, i),

at

in the half space D. These solutions are assumed to be nonnegative

and symmetric in x with respect to the axis x = 0, i.e., w(x, t) =u(\x\,t).

Separating variables in (5), we easily find that

M (t I r \Y-k

(6) e^Km( |*|0 = e^ V -^-^J-
11 k-o i"klT(k + m/2)

is a nonnegative symmetric solution of (5), and by superposition, we

obtain solutions of the form

/I CO

eihKm( | x | £)d<p(£)
o

(7)

((t>(H)S;0 < f  d<p(^) < «, y

Hirschman  [2 ] has proved that every nonnegative symmetric solu-

tion of (5) can be written in the form (7). The representation (7)

will play an essential role in the following.

We can define

loo u(a 1(1,/)
(8) h(a) = lim sup->

<-.-» t

since, as follows from (7), the nonnegative symmetric solutions of (5)

in D are positive in the interior of D. Let «o denote the distance from

the origin to the support of c£c/>(£).

Lemma 1. 7/0^a^a0; then h(a)=a0(a0 — a).

Proof. Consider first the function

e«-a>^<K£).
o
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From the definition of cxo it follows that for every e>0

c«««-»>«d0tt)J(l + o(l)) (t-*- »).

Consequently,

(10) ^ie(°o+.)(ao+«-a)( gv(fit\t\,t) £ A2e"o{a<>-a)t (Ai > 0, A2 > 0),

from which it follows that

log v(a |*|,i)
(11) lim sup- = a0(«o — a).

!->— « t

Using the inequalities

(12) A'Km(a \t\k) = e"£1" ^ AKm(a(l + e)\t\£)

(A' > 0, A = A(t) > 0),

which follow by comparing the corresponding power series expan-

sions, and using the definitions (8) and (9), we conclude from (11)

that

ao(a0 — a) ^ h(a),        h(a(l + e)) ^ ao(«o — a).

Replacing a in the second inequality by a/(l+e) and taking e—>0,

we obtain h(a) ^a0(a0 — a), which together with the first inequality

proves the lemma.

From the inequalities (10) it is clear that we have actually proved

that lim(-,_M (log u(a\ t\ , t))/t exists and is equal to ao(ao— a). Taking

in particular a = 0, we obtain

,,,, 2 ,. log«(0, 0
(13) aa = lim   - •

Lemma 2. Ifa0<a< oo, then h(a)^a0(ao — a).

Proof. As in the proof of the preceding lemma, we first consider

the functon v(a\ t\, t) defined by (9).

Since cA/>(£) ̂0 immediately to the right of §=«o, we get

j    e£«-«><<Z<&(£) ^ Ae^+')('c">+'-a)t (e > 0, A = A(e) > 0),

from which it follows that

.. lpg "(«I < 1 » 0 < t w v
lim sup- S (oto + e)(ao + e — a).

<->-« /
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Taking e—>0 and proceeding as in the proof of Lemma 1, we finally

get h(a) ^a0(a0 — a).

3. Let z(x, t) be a nontrivial nonnegative solution of the heat equa-

tion in D. Define

u(r, t) =- I       z(x, t)dSx,
Umr^J U|_r

where wm is the surface area of the m-dimensional unit sphere.

u(\ x\, t) is also a solution of the heat equation [2] and, consequently,

belongs to the class of functions considered in the preceding section.

Denoting

(14) M\(r) = Maxz(x, t),
1*1-'

and applying Lemmas 1, 2 and (13), we obtain

Lemma 3. For every nonnegative a,

log Mt(a \ i\)
(15) lim sup- ^ aQ(ao — a)

!->-» t

where ao is given by

,«,,. 2 ,. logz(0,t)
(16) ao =   hm   - •

<->- » t

With the aid of Lemma 3 we proceed to prove Theorem 1. Let

T=(l>}) be an orthogonal matrix such that the function v(x. i)

— u(Tx, t) satisfies the equation

dv(x, t) ™       dv(x, t)
- = Av(x, t) + Z_i di-V cv(x, t).

dt i=i dXi

Clearly, d = ( £<#)m = (X>?) "2 = *• The function w(x, t) = e*di:"i2v(x,t)

satisfies the equation

dw(x, t)
- = Aw(x, f) + (c — b2/A-)w(x, l),

dt

and finally, the function z(x, t) =e~(-c~b IA)tw(x, t) is a nontrivial non-

negative solution of the heat equation. Since

(17) u(Tx, t) = ec<-62/4><e-s<W22(X) (),

it follows that u(x, t) is positive in the interior of D and that
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(18)       h^.L^ti,!!!*!.

From (17) we also deduce that

log Mt(a | /1 )
lim sup-

t—>— « t
(19) ,    ,   ,

/ 1      \        1 log Mt(a \i\)
^ I c-62)H-4a + lim sup-•

\ 4/2 (-,-» /

From (3) and (18) we have

..      log 2(0,0 ,    1  „
lim  -= 7 H-o ,

I—» / 4

and using Lemma 3 we obtain,

Z i        I

log Mt(a \ t\)
lim sup —- g v + i2/4 - (y + iV4)>'*a.

Substituting in (19) and taking a>(c+y)((y+b2/4)1'2-b/2)-\ we

get

loglffoM)   ̂
lim sup- < 0.

Since for bounded M^(a\t\) (-» <j^0)

lim sup (log Af"(a | /1 ))// ^ 0,
(->-=0

the theorem is proved.

4. In the special case 6 = 0,  (4) becomes a> (c+y)y~112. In the

following theorem we release the assumption 7>0.

Theorem 2. Let u(x, t) be a nontrivial nonnegative solution of

du        ™ d2u
(20) — =    >    aa-1- cu

dl       i,j=i        dXidXj

in the half space D and let (ai3) be a positive matrix. If u(x, t) f^Aect,

then u(x, t) cannot be bounded in every cone Da.

Proof. From (19) it is clear that if a satisfies

(21) h(a) + c < 0,
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then u(x, t) is unbounded in Da. Here, h(a) is defined with respect

to the function v(\x\, t) obtained by symmetrization of e~clu(Tx, t).

Since the last function is not constant, v(\ x\, t) is also not constant,

and a simple argument based on (7) shows that h(a)—>— oo as a—> oo.

It follows that (21) is satisfied for large a.

In the case c = 0 we can solve (21) by using Lemmas 1 and 2. We

get

Corollary. Let u(x, t) be a nonconstant solution in D of the equation

du ™ d2u
— =   2-i aH-'
dt       i,j=i        dXidXj

Suppose further that u(x, t) is bounded from below. Then u(x, t) is un-

bounded in Da for all

( \ogu(0,t)\i2
a > I    hm   -1    .

\^-M / /
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