LIOUVILLE’S THEOREM FOR PARABOLIC EQUATIONS
OF THE SECOND ORDER WITH CONSTANT
COEFFICIENTS!

AVNER FRIEDMAN

1. We shall consider a generalization of Liouville’s Theorem for
functions which are solutions of the parabolic equation

3u(x t) 2"’: *u(x, t) m o Qu(x, t)

+ 2.0
dx,0x; ‘Z':l xi
The coefficients ay;, b; and ¢ are real constants, (a;;) is a positive
matrix and the solutions #(x, ¢) are defined and nonnegative in the
half space — » <t=0, denoted by D. We use the notation x
=(xl; t xm)v {x| =(fo)1/2-

It will be shown later on, that the nontrivial solutions of (1) are
positive in the interior of D and that

log #(0, 1)

@) lim L2820

{—— 0

(1)

+ cu(x, ).

exists.

The growth properties of these solutions will be studied in cones D,:
|x| <a|t|, t<0 with axis x=0 and opening 2a. The natural general-
ization of Liouville’s Theorem (see, for instance, [1]) is equivalent
to the statement that the nonconstant solutions of (1) cannot be
bounded in D, which may be considered as a cone D, with a= .
We can now state the main result of this paper.

THEOREM 1. Let u(x, t) be a nontrivial nonnegative solution of (1) in
the half space D. Denote
log #(0, ¢
3) lim g—t(—) — vy

t——

If c+v20 and if >0, then u(x, t) is unbounded in D, for all

@ > e+ ((v +71}—b2>”2 o )_1,

where b= (D_b2) V2
The assumption ¢+y=0 excludes the trivial case ¢+vy <0, in
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which %(0, ) is unbounded. The assumption ¥>0 is sharp in the
sense that if y=0, # may be bounded in D. As an example, take
u(x, t)=et where ¢>0; u(x, t) satisfies du/0t=Au-+cu, but it is
bounded in D. Note finally, that the assumption v >0 excludes con-
stant (#0) solutions. The proof of Theorem 1 is given in the next
two sections.

2. In this section we shall consider some growth properties of a
special class of nonirivial solutions of the heat equation

dw(x, 1)

©) Py

= Aw(x, {),

in the half space D. These solutions are assumed to be nonnegative
and symmetric in x with respect to the axisx =0, i.e., w(x, t) = u(| x] R
Separating variables in (5), we easily find that

© (] x| )2
. S
6) e Kn(| 2|8 = e k=0 4E!T(k + m/2)

is a nonnegative symmetric solution of (5), and by superposition, we
obtain solutions of the form

wix, i) = u(| x|, 1) = f "o x| Dds®)
) .
(¢(£)/‘;0 < fo do(¢) < °°>-

Hirschman [2] has proved that every nonnegative symmetric solu-
tion of (5) can be written in the form (7). The representation (7)
will play an essential role in the following.

We can define

. los u(al ¢l , D)
8) h(a) = lim sup —————

t—o t

since, as follows from (7), the nonnegative symmetric solutions of (5)
in D are positive in the interior of D. Let a denote the distance from
the origin to the support of d¢(§).

LEmMMA 1. If 0Sa=ay; then h(a) =ao(ao—c).

Proor. Consider first the function

©) wal ], ) = [ etonag).
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From the definition of «, it follows that for every ¢>0

agte
oalt], ) = ( [ ew—aﬂdqs(s))(l o)) (1o — ).

ag
Consequently,
(10)  Ajetrtotartear < g(q| (], 1) £ Azem@at (4, >0, 4, > 0),
from which it follows that

log v(a| ¢],¢
(11) lim sup -—E—(C—X-I——l——z = ao(ag — @).

t>—w ¢
Using the inequalities
(12) A'Kn(a|t]§) < etltl £ AK(a(1 4 ¢) | 1] 8
(4'">0,4 = A(e) > 0),

which follow by comparing the corresponding power series expan-
sions, and using the definitions (8) and (9), we conclude from (11)
that

aglag — @) < h(a), a(l + ¢€) < allas — a).

Replacing « in the second inequality by a/(1+4¢€) and taking e—0,
we obtain k(a) Sae(ae—a), which together with the first inequality
proves the lemma.

From the inequalities (10) it is clear that we have actually proved
that lim,_,, (log u(a] t| , 1))/t exists and is equal to ao(ao—a). Taking
in particular &« =0, we obtain
(13) az = lim -lw .

t——w ¢

LEMMA 2. If ap<a< =, then h(a) Sag(ar—a).

PRrROOF. As in the proof of the preceding lemma, we first consider
the functon v(al tl, t) defined by (9).
Since d¢(£) #£0 immediately to the right of £ =a,, we get

f eE(E-—a)td¢(£) > Aelaote) (aote—a)t (e >0,4= A(e) > 0),

L)
from which it follows that

1
lim supig—v(—a—tl-tl-’-t—) =< (a0 + €)(ao + € — ).

t—— o
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Taking e—0 and proceeding as in the proof of Lemma 1, we finally
get h(a) Sal(ae—a).

3. Let 2(x, t) be a nontrivial nonnegative solution of the heat equa-
tion in D. Define

u(r, t) =

1
[ st nas.,
W™ 1 (g

where w,, is the surface area of the m-dimensional unit sphere.
u(| x|, t) is also a solution of the heat equation [2] and, consequently,
belongs to the class of functions considered in the preceding section.
Denoting

(14) Mi(r) = Max z(x, £),

17| =r
and applying Lemmas 1, 2 and (13), we obtain

LEMMA 3. For every nonnegative c,

log Miy(a| ¢
(15) lim sup —o o717 el t])

t—>—w ¢

=< aglar — @)

where o 1s given by

log 2(0, ¢
(16) o= lim 8700

t—>—o

With the aid of Lemma 3 we proceed to prove Theorem 1. Let
T =(¢;) be an orthogonal matrix such that the function v(x. :)
=u(Tx, t) satisfies the equation

l¢] t m 7] t
"D ety + 362250 4 s,
i=1 X3

Clearly,d= (D d?)V2=( D_b})Y2=b. The function w(x, t) = e24=i/%y(x,¢)

satisfies the equation
dw(x, t)
T = Aw(x, t) + (C - 62/4)w(x, l),

and finally, the function z(x, ) =e‘(°"’2“)‘w(x, t) is a nontrivial non-
negative solution of the heat equation. Since

(17) w(Tx, ) = @V I0tg2dizilzg(, 1),

it follows that u(x, ¢) is positive in the interior of D and that
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l O,t 1 l O,t

1—

{——
From (17) we also deduce that
log M:(a| t| )

lim sup
a9 7 :
1 log Mi(a|t])
Sle——08 +—ba+11m sup —————
4 t>— o 14
From (3) and (18) we have
log 2(0, ¢ 1
m gf00 1,
t—— o ¢ 4

and using Lemma 3 we obtain,

log Mi(al
Iim supw v+ b2/4 _ ('Y + b2/4)1/2a.

15— t
Substituting in (19) and taking a> (c+7v)((y+5%/4)V2—b/2)"1, we
get
log M(a|t
lim sup M <0
t——

Since for bounded M(a|t]|) (— = <t=<0)
lim sup (log M?(a[ t| N/t =0,
{——

the theorem is proved.

4. In the special case =0, (4) becomes a> (¢c+7v)y V% In the
following theorem we release the assumption y>0.

THEOREM 2. Let u(x, t) be a nontrivial nonnegative solution of
ou m 9%
(20) —= 3

ot i,j=1 ax,ax,

+ cu

in the half space D and let (ai;) be a positive matrix. If u(x, t) #Aet,
then u(x, t) cannot be bounded in every cone Da.

Proor. From (19) it is clear that if « satisfies
(21) hea) + ¢ <0,



1958] PARABOLIC EQUATIONS OF SECOND ORDER 277

then u(x, t) is unbounded in D,. Here, k(@) is defined with respect
to the function v(l x| , t) obtained by symmetrization of e~*u(Tx, t).
Since the last function is not constant, ‘v(l xl , 1) is also not constant,
and a simple argument based on (7) shows that A(a) > — © asa— .
It follows that (21) is satisfied for large a.

In the case ¢c=0 we can solve (21) by using Lemmas 1 and 2. We
get

COROLLARY. Let u(x, t) be a nonconstant solution in D of the equation

ou kil 9%u

S

g
¢ i,j=1 0x0x;

Suppose further that u(x, t) is bounded from below. Then u(x, t) is un-
bounded in D, for all

log #(0, £) \ /2
a>< lim —%) :
{——
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