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1. Introduction. If jl/g is a finite separable normal (or Galois) ex-

tension field of degree n, with Galois group © = (Cri, • • • , G„), then

the theorem of the normal basis asserts that ^/^ always possesses a

field basis of the form wGl, ■ ■ ■ ,wGn(wE$), called a normal basis of

$/3f. Nakayama [7] has extended the normal basis theorem to Galois

division ring extensions of finite dimension n with outer Galois group

of order n. More recently Kasch [6] has established the existence of

a generalized normal basis for Galois extensions of certain simple

rings.

In the present article, if © = (Cn, • ■ ■ , GH) is a finite group of

automorphisms of a ring $, and if % is the fixring corresponding to ®,

then $/g has a &-normal basis whenever $ has an independent

^-basis of the form uGl, - ■ - , uGn (uE$). Then u is a ®-normal basis

element of $/5. Contained in this article is a characterization of those

extensions $/3f possessing a ©-normal basis for which the ©-normal

basis elements have the following simple description: every wE® with

®-trace 23"= i w<Si "which is regular in g is a (^-normal basis element of

$/3f. It will be shown that the only proper Galois extensions (of the

kind considered) having this property are those for which &/% has

dimension pe and St has characteristic p.1 This determination follows

as a corollary to the more general Theorem 1.

For the most part the methods of the present note are the same

as those announced in [4], namely, when $/g has a ©-normal basis,

essential use is made of the evident ©(^-module operator isomor-

phism between ©(g) and $, where ©(55) denotes the group ring

defined by © and %.

In §4, the question of the existence of a ©-normal basis is con-

sidered. In §5, an application of the foregoing results is given.

I wish to thank the referee for his constructive remarks, and, in

particular, for observing that the proof of my earlier result for fields

(which had been submitted to this journal for publication) was valid

for more general rings.

Presented to the Society January 30, 1958; received by the editors October 18,

1957.
1 This result contains some previous work in this direction. See [l, Theorem 1;

3, Lemma 1.4; 4] and [9, Theorem l],
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2. The ring homomorphism <p. If © is a group of automorphisms

of a ring Si, then 3f(@) will denote the subring consisting of those ele-

ments of $ left fixed by each automorphism in ©. Then Si/% is ®-

Galois, where g = 3K®)- If 8 ls any subring, ©(fi/SO indicates the
group of all automorphisms of fi which leave fixed each element of %.

When © = (C7i, • • • , Gn) is a finite group of automorphisms of St,

then the ®-trace of xCSt is the sum T@(x) =xGl+ • • • +xG«.2

For brevity, a simple ring with minimum condition will be called

a simple ring. Let fi bea ring with identity 1, and suppose fi is a

finitely generated right g-module, where % is a simple subring con-

taining 1. Then St has an independent right ^-basis and every right

g-basis of Si has the same cardinality [fi:5], called the dimension

of Si/%.3
Definition. Let fi be a ring simple with identity, and let % be a

simple subring of St such that Si/% is ©-Galois, [fi:ij] is finite, and ©

= (Gi, • • • , Gn) has order n= [&:%]. If for some w£fi, Si has an

independent right ^-basis of the form uGl, • • • , u0n, then Si/% has

a (3-normal basis generated by u. Then u is a ^-normal basis element;

a @(Si/%)-normal basis [element] is simply a normal basis [element].*

Let 8 = 8(fi) be the ring of all endomorphisms of the right Si-

module Si. If kCSt, kr signifies the "right multiplication" defined by:

x—>xk' = xk for every xCSt. The set %r={arC&\aC%} is a subring

of 8 isomorphic to %. ®(%r) represents the subring of 8 generated by

%r and a subgroup © of Gb(St/%). When Si/% has a ©-normal basis,

and ® = (C7i, • • • , Gn), it is trivial to verify that Gi, • • • , G„ is an

independent right gr-basis of ®(%r). Since a'G = Gar for every arCv3r

and every GC®, the elements Gi, ■ • ■ , G„ constitute a left ^'-basis

of Si as well. Since %r is a simple ring, i.e., since % may be identified

with the full ring of kXk matrices with elements in a division ring,

®(5r) has finite dimension over some division subring; for such rings

it is known that every element of ®(%r) is either regular or a zero

divisor in ®(j5r). a fact which will be used in the following familiar5

characterization of normal basis elements of Si/%.

Lemma 1. Let Si/% have a ®-normal basis generated by u. Then W is

2 If a is any endomorphism of $, x" will denote the image of x C & under a.

3 For this result see [5, p. 134]. I am indebted to the referee for this reference, as

well as that given in Footnote 7.

41 wish to emphasize that the present definition of a ©-normal basis does not coin-

cide necessarily with Kasch's normal basis defined in [6]. The concepts do coincide,

however, when ©($/($) is outer. See §4 of the present article.

5 R. Stauffer, The construction of a normal basis in a separable normal extension

field, Amer. J. Math. vol. 48 (1936) p. 596, Theorem 5.
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also a ^-normal basis element of &/%, aE®(%r), if and only if a is

regular in ®(%r).

Proof. Since the automorphisms Gi, ■ ■ • , Gn form an g'-basis of

®(Sr). u° 's a ©-normal basis element of $/% if and only if a is not

a left divisor of zero in ®(%r). Then by the argument preceding the

lemma, cr must be regular in ®(%r).

In order that w be a ©-normal basis element in ®/% it is trivially

necessary that the trace T@(w) be a nonleft divisor of zero in %.

Since % is isomorphic to a full ring of kXk matrices with elements

in a division ring, this is the requirement that 7®(mi) be regular

in %. We wish to characterize those extensions for which the converse

is true, namely, every mi with regular ©-trace is a ©-normal basis

element in ®/%. To do this we have found it interesting (and ex-

pedient) to generalize the problem. We consider intermediate rings

A, $2A3g, for which the extension $/A is £>-Galois, where § is a

normal subgroup of ©. Then if ty is the subgroup of Qb(A/%) induced

by ®, we show that

(A) w is a ®-normal basis element of $t/%

implies

(B) the &-trace of w is a ^-normal basis element of A/%.

In this more general setting (the normal basis elements of the trivial

extension A/%, when A = %, are precisely the non left zero divisors in

%) we seek a determination of those extensions $/% for which every w

satisfying condition (B) also satisfies (A). The preliminary facts are

collected in the following lemma.

Lemma 2. Let $/% have a ®-normal basis generated by u, and let A

be any simple intermediate ring such that $/A is Q-Galois, where

$$ = (Hi, • ■ • , Hh) is normal in ®, and h= [S:A]. Then,

(1) A/% has a ^-normal basis generated by T§(u), where ty is the

group of automorphisms of A/% induced by ®.

(2) The kernel of the (natural) homomorphism <b (defined below) of

®(%r) onto %*(%') is the ideal 33 generated by Ht — 1, i=l, 2, - - - , h,

where Hi = l is the identity automorphism.

(3) A necessary and sufficient condition that (B) imply (A) when

w = W is for a to be regular in &(%r) whenever qb(a) is regular in %^(%r).

Proof. (1) Let Pu • ■ ■ , Pq, q = n/h, be a complete set of coset

representatives of © relative to &. Then the isomorphisms

Pi, • • • , Pq of A in ® induced by the automorphisms Pi, • • • , Pq,

respectively, are distinct. Since § is normal in © the Pj are actually

automorphisms of A, so that <|}=(Pi, • • • , Pq). $ is actually iso-

morphic to ©/§ under the correspondence Pi-^Pi!g, so that A/% is



1958] GALOIS EXTENSIONS 225

evidently ^-Galois. The dimension relation (cf. [5, p. 138])

[St :A] [A: %] = [St:%] = n implies [A:%]=n/h = q, the order of % That

T%(u) generates a ^-normal basis of A/% is quite easily seen.

(2) We have seen that the automorphisms Gi, • • • , Gn form an

independent gr-basis of ®(%r) so that each oC®(%r) is uniquely ex-

pressible as

° = Z Z HiPj(ai]Y (aij C %).
j=i t=i

The homomorphism <f> is defined by

*00 = Z Z ?<(««)'.
y=i i=i

so thatffisin the kernel S3of c/> if andonlyif 2j=1a,j=0,_7 = l, • • • ,q.

Then ]£?_, HPfont)r= Z?-2 (i?,—l)Py(ay)r. Thus 33 is the ideal
generated by the {.ffi — 1}. (Since ^> is normal in ®, 93 is actually the

right ideal generated by these elements.)

(3) The center of ®(%r) contains t = Z«=i Hfy moreover dT lies in

A for all d. These two facts combined with the knowledge that

d» = d*w, for all dCA and aC®(%r) yield:

T$(x?) = *"■ = (a:7)" = (xTyM = T$0»:)*(,r>.

Since m is a ©-normal basis element of Si/%, by Lemma 1, W is also

if and only if a is regular in ©(f?')- By (1) of the present lemma T$(u)

is a ^-normal basis element of A/%. Moreover T^(u") = T^(u)*M so

that T$(w) is a ^-normal basis element of A/% if and only if <p(cr)

is regular in '^(S''). Thus for w = u", (B) implies (A) is equivalent to

that statement that a is regular in ®(%r) whenever 0(a) is regular in

mr)-

3. A lemma on group rings. The condition that (B)=*(A) is re-

stated as:

(I) w is a ®-normal basis element of Si/% whenever T$(w) is a ty-

normal basis element of A/%.

From Lemma 2(3) it is clear that (I) is equivalent to:

(i) cr is regular in Sl = ®(3r) whenever a is regular in the difference

ring §1 = 31 — 93, where a is the image of a under the canonical homo-

morphism of 21 onto SI.

That (i) is equivalent to the assertion that 93 is a quasi-regular

(q.r.) ideal can be seen easily as follows: If cr is regular in 31, then

ap = l+b, withpGSI, &£93. If 93 is q.r., both y = o-p, and <r are regular,

and tr~1=py~1. Conversely (i) implies that l+b is regular for each

2>e93;93isq.r.
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It is now evident that we actually are seeking to characterize the

condition:

(ii) 93 is contained in the radical of 81.

When % is a field, and 93^0, it is known that (ii) holds (if and) only if:

(II)  % has prime characteristic p, and h = p°.

In a routine fashion this result may be extended as follows:

Lemma 3. Let & be a group of finite order, and !q = (IIi, ■ ■ ■ , IIn)

be a normal subgroup of © different from the identity subgroup (1). Let

% be a simple ring (with minimum condition), and let S3 be the ideal

of the group ring &(%) generated by all iff,—T, i=l, • • ■ , h. Then 93

is contained in the radical of &(%) if and only if (II) holds. (Then 93 is

nilpotent.)

Proof. Suppose 93 is contained in the radical 9J of &(%). As was

seen before ®(%) has finite dimension over a division subring so that

9t, and hence 93, is nilpotent. Then the algebra §* over the center 3

of % having Hi — l,i = 2, - - - , h (where Hi = 1), as a basis is also nil-

potent. Since 3 is a field, this is possible only if both 3 has character-

istic p and h = pe.i

Conversely let % have prime characteristic p, and h = pe. Then the

algebra §* defined above is nilpotent; (§*)* = 0 for some integer k.7

Since 93 = ?!£* = $*H, where H = ®(5), certainly 93* = 0 also; 93Cffi.

In view of this lemma, and the remarks preceding, we now have

Theorem 1. Let St, A, and % be as in Lemma 2, with St t£A. Then

(I) and (II) are equivalent.8

When A is set equal to % in Theorem 1, one obtains the

Corollary. Let $ be a simple ring, and % a proper simple subring

such that Si/% has a ®-normal basis. Then every element in St with regu-

lar ®-trace is a ®-normal basis element if and only if both % has prime

characteristic p and [St:%] = p'.

In case % is a division ring, the corollary shows, when St 7*%, that

every element of St with nonzero ®-trace is a ®-normal basis element if

6 It is well known that if Jp* is the radical of ^>C3), then ,3 must have prime char-

acteristic p dividing h. If h^p", then § contains an element 5 of prime order q^p,

and such that, for 8 = (S), C(3) is semi-simple, which is impossible since %($) ^0 is

nilpotent.

7 An algebra with a nilpotent basis is itself nilpotent. See J. H. M. Wedderburn,

Ann. of Math. (2) 38 (1937) p. 854, Theorem 1.
8 The proof of [3, Lemma 1.3] provides an elementary proof of the implication

(II)=>(I) in the case $/g is a cyclic field extension.
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and only if % has characteristic p, and [St'.%] =p'.%

4. Existence of a ©-normal basis. In this section conditions which

imply that St/% possesses a ©-normal basis are noted. First let ©

be a group of finite order n of outer automorphisms of a simple ring

Si. If St/% is ©-Galois, then the results of Nakayama [8] show that

(i) % is simple, (ii) ©=©(fi/g), and (iii) [St:%]=n. Then Kasch's

theorem [6, Satz 7] applies—St/% possesses a (©(fi/5)—) normal

basis. This observation is a special case of the next theorem which is

also obtained by application of results of Kasch and Nakayama.

Theorem 2. Let Si be a simple ring, and let % be a simple subring

such that (1) [fi:^] is finite, (2) Si/% is ®-Galois, where ® has finite

order n= [St'.%], and (3) the centralizer %' of % in St is simple. Then

Si/% possesses a ®-normal basis

Proof. Since ®(%r) is a ring with minimum condition, by [6>

Satz 4], it suffices to show that ©(o^) is a right scalar ring of the endo-

morphism ring 8 of St/%, and that [8: ®(%r)]=n, i.e., that 8 has an

independent right ®(%r)-basis of length n. By [8, Theorem 3] the

group © = ©(fi/g) is regular so that n= (©:$) [g':g], where q

= (®:30 is the index in © of the subgroup 3 of all inner automor-

phisms of St, and S is the center of St. The completion ©3 of © is

evidently © so that q= (®: $C\®). Thus 3H® has order d = [$':<£].

If the inner automorphisms effected by regular elements xi, • • • , xa

constitute 3^®, then it is clear that Xi, • • • , Xd is an independent

(5-basis of %'. By the criterion of [6, Hilfssatz l], the equation

(©: 3P\®) [g':6] =n implies that the elements gu ■ ■ ■ , gn of ® are

right linearly independent over Sir. Kasch's arguments in the proof

of [6, Satz 7, pp. 457-458] may be transferred step-by-step to the

present case. These we summarize as follows:

(X) Since [s:fir]=wby [6, Hilfssatz 5], 8 = ®(Str), and gu ■ ■ ■ , gn

is an independent right fir-basis of 8; also S = figi+ • • • +Stg„.

(Y)  If Wi, • ■ ■ , wn is an independent right g-basis of St, then

S=Z?-i w\(%rgi+ ' ■ • +Srg»).

(Z) Since [5:%']=n2, and since ®(%T) = %rgi+ ■ ■ ■ +%rgn

(=giSr+ " " ■ ~r-gn%r) has dimension n over %r, then w\, • • • , wrn

must be an independent right @(o:r)-basis of 8 as desired.

Theorem 1 and its corollary are now applicable to the simple ex-

9 Added in proof: This fact, in the case K itself is a division ring, has been obtained

independently by Onerada and Tominaga, On strictly Galois extensions of degree p'

over a division ring of characteristic p, Math. J. Okayama University vol. 7 (1957) pp.

77-81.
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tensions St/% of Theorem 2. In Theorem 1, the assumption that § be

normal in ® implies that every automorphism of ® maps A onto itself.

Then, as was noted in Lemma 2, A/% is ^3-Galois.

Although it is immediate, it perhaps should be noted that the

assumption on the simplicity of %' in Theorem 2 is automatically

satisfied when St is a division ring. The same is true whenever @ is

an outer group of automorphisms. In this latter case, as was noted

in the remarks preceding Theorem 2, 0 is then the Galois group

®(«/8).

5. Completely basic extensions. Let St and % be division rings,

such that St/% is ©-Galois where ® = &(St/%) is a finite group of

outer automorphisms. If A is any intermediate division ring, .§

= Q&(St/A) is also outer. Both extensions St/% and St/A possess normal

bases. Let Pi, P2, ■ ■ ■ , Pq be right coset representatives of & rela-

tive to $, so that for uESt, T®(u) =vPi+ ■ • • +vp«, where v= T$(u)

GA. Now suppose St has prime characteristic p, and (St'. %) =p". If u

is a normal basis element of St/%, P®(w)^0, so that vt^O. Thus by

the corollary to Theorem 1, u is a normal basis element of St/A also.

Employing terminology used in [3] we shall say that an outer Galois

extension St/% possessing a normal basis is completely basic if every

normal basis element of St/% is also a normal basis element of St/A,

where A is any intermediate ring for which St/A possesses a normal

basis. Completely basic field extensions were studied in [3] where it

was shown that every Kummer field extension is completely basic.

Until now the only known examples of completely basic extensions

were Abelian field extensions. The above example not only permits

us to assert the existence of completely basic extensions which are

not fields but it also establishes the existence of completely basic

field extensions which are not Abelian. This latter statement is a

consequence of the fact that normal (or Galois) field extensions of

degree pe over a field of prime characteristic p need not have an

Abelian Galois group.
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REMARK ON AUTOMORPHISMS OF GROUPS

MAURICE AUSLANDER

Let G be a group with center C. Let a be an automorphism of G

and n an integer such that a" is an inner automorphism. Thus there

is a g in G such that an(x) =gxg~1 for all x in G. Applying a to both

sides of this equation we have that an(a(x)) =a(g)a(x)a(g)~1 ior all

x in G. Since every element in G can be written as a(x) for some x in

G, it follows that g and a(g) induce the same inner automorphism

of G. Thus g~la(g) = c where c is in C. Now if y is in C, then (gy)~1a(gy)

= g~1y~1gca(y) =cy~1a(y). Thus as x runs through all x in G which

induce the inner automorphism an, the elements of the form x_1a(x)

run through the entire coset cCa in C/Ca, where Ca is the subgroup

of C consisting of all elements of the form y~xa(y) (y in C). This ele-

ment of C/Ca depends on n and will be denoted by o(a, n).

Theorem, i/ all the fixed points of a are in the center of G, then

an = 1. Further an = l if and only if o(a, n) = (1).

Proof. Let g in G induce the inner automorphism an. Then by the

previous remarks we have that g_1a(g) =c where c is in C. Thus the

abelian subgroup of G generated by C and g is stable under a. Since

«"(#) =£> it follows that Ylj-o ai(s) is a fixed point of a and is thus

in C. On the other hand, since ct(g)=gc, we have that JJ"=o a'(?)

= gnd for some d in C. Therefore g" is in C which means that an = 1.

It is clear that if an = l, then o(a, w) = (l). Suppose o(a, n) = (l).

Then by our introductory remarks, we can choose a g in G such that

g induces the inner automorphism a" and g~~1oc(g) = l. Thus g is a

fixed point of a. Consequently g is in the center of G, which means

that an = l.
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