ON FREE PRODUCTS!
A. KARRASS AND D. SOLITAR

We prove several theorems for free products most of which are
generalizations of results known for free groups.

Let G be a nontrivial free product of finitely many groups 4; each
of which is a finite extension of a free group F; of finite rank =0.
Then we call G a free product of finite type. In particular a free product
of finitely many finite groups is of finite type. In what follows “f.i.”
denotes “finite index” and “f.g.” denotes “finitely generated.”

THEOREM 1. Let G be a free product of finite type and H#1, a f.g.
subgroup of G. If H is normal (or more generally if H contains a non-
trivial normal subgroup of G) then H is of f.i. in G.

Proor. Let F be the normal subgroup of G generated by the F;
and the commutators [4;, 4;] (7). We show F is a free group.
For, by the Kurosh Subgroup Theorem (see [6]), F is the free prod-
uct of a free group and the intersections of F with various conjugates
of the 4.. The intersection of F with a conjugate of 4, is a conjugate
of FNMA,. It therefore suffices to show FNA4; is free. Consider the
natural homomorphism » of G onto G/F. Now G/F is isomorphic to
the direct product of the groups 4./F:;. Moreover, under v, 4; is
mapped canonically onto 4./F;. Hence FMA,, which is the kernel
of » restricted to 4;, must be F,. Clearly then F is a free group of {.i.
in G.

Let Ns£1 be a normal subgroup of G contained in H. Then N
must be infinite. For otherwise, applying the Kurosh Subgroup Theo-
rem, we would have N contained in a conjugate of some 4;. But then
the normalizer of N would also be in this conjugate (see proof of
Theorem 5), contrary to N being normal in G. By the isomorphism
theorem N/NNF~NF/F and H/HN\F~HF/F. Hence NNF is of
f.i. in NV so that NN F#1. Also HNF is of {.i. in the f.g. group H,
and so HNF is f.g. (see Schreier [8]). Thus we have HNF is a f.g.
subgroup of a free group G containing NNF, a nontrivial normal
subgroup of F. Consequently (see [5]), HNF is of f.i. in F and so H
is of f.i. in G.

COROLLARY 1. Let G be a free product of finite type, and H a f.g.

Presented to the society, April 5, 1957; received by the editors October 9, 1957.

! Work on this paper was supported by a grant from the National Science Founda-
tion (G-2796).

217



218 A. KARRASS AND D. SOLITAR [April

subgroup. If H is of infinite index then the intersection of the conjugates
of H must be 1.

COROLLARY 2. If G 1s a free product of finite type, and H,, I, are
f.g. subgroups, then HiMH, is f.g.

Proor. First observe that if G is any group, K a subgroup of f.i.,
Il a f.g. subgroup, then HNK is f.g., since IIMK is of f.i. in H.

Now let F be as in the proof of Theorem 1. Then HiN\F, Hy\F
are f.g. subgroups of the free group F and therefore HiNH,NF is f.g.
(see Howson [4]), and is of f.i. in I[;\H,. Hence a set of generators
for HHINH,NF together with coset representatives for HiMNH,
mod HiN\H,NF constitutes a finite set of generators for HiMNH,.

In particular, taking G to be the modular group, we see that the
intersection of two f.g. groups of unimodular 2 X2 integral matrices
is f.g.

THEOREM 2. If G is a free product of finite type, then G is hopfian,
1.e. G=~G/N implies N=1.

Proor. Let G, denote the intersection of all subgroups of G of in-
dex <k. Then N G.=1. For if F is as above, then the intersection
of the subgroups of {.i. in F (and therefore in G) is 1 (see e.g. Kurosh
[6]). Let G=~G/N and let » be the natural homomorphism of G onto
G/N. Since G is f.g. it has only finitely many subgroups of f.i. <k
(see Hall [2]) and the number of these is the same as the number of
subgroups of f.i. =k in G/N. But the pre-image under » of such a
subgroup of G/N is a subgroup of G, of f.i. =k, and containing N.
Hence Gy DN for each &, and so N=1.

COROLLARY 3. If G is any f.g. group such that the intersection of its
subgroups of f.i. is 1, then G is hopfian.

COROLLARY 4. Let G be any f.g. group and let N be the intersection
of its subgroups of f.i. Then G/N is hopfian, and moreover G/ N~G/K
implies N=K.

Proor. Clearly the intersection of the subgroups of {.i. in G/N is
1, and so G/N is hopfian. Moreover, G/N and therefore G/K, have
as many subgroups of f.i. m as G has. Hence, as in the proof above,
each subgroup of f.i. in G contains K. Therefore NDK so that
G/K~G/N~(G/K)/(N/K). But since G/N is hopfian, G/K is hop-
fian and so V=K.

That Theorem 2 does not hold for any f.g. nontrivial free product
follows immediately from the existence of a f.g. non-hopfian group H
(see Neumann [8] or Higman [3]). For, let H~H/K, K=1. If
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G=H+L, L any f.g. group and N the normal subgroup of G gener-
ated by K, then G/N~(H/K) + L~H + L=G.

A group G is w-nilpotent (w-solvable) if the intersection of the groups
of the lower central series (derived series) is the identity. Next a
generalization of a theorem of W. Magnus.

TuEOREM 3. If G is a free product of finite type and each A; is a
prime power extension of F; corresponding to the same prime, then G is
w-nilpotent. Moreover, if the A; are finite, then G is w-nilpotent if and
only if the A; are prime power groups corresponding to the same prime,

ProoF. Let F be as above. If the 4;/F; are p-groups, then G/F
is a p-group. Form the groups Qo=F, Q;;1=the intersection of all
normal subgroups of index p in Q;. We may now proceed as for free
groups (see Hall [2]) to obtain NQ;=1 and that the intersection of
the groups of the lower central series of G is 1.

Now, if some A4; has an element of order p, and some 4; (j#1) has
an element of order ¢, p, ¢ distinct primes, then G has a subgroup
which is the free product of a cyclic group of order p by a cyclic group
of order ¢. This group is not w-nilpotent (see Takahasi [10]). Hence
G cannot be w-nilpotent. In particular if the 4; are finite, they must
all be p-groups.

THEOREM 4. If G is a free product of finite type and each A/ F;is
solvable, then G is w-solvable. Moreover, if the A; are finite, then G 1is
w-solvable if and only if the A, are solvable.

Proor. Let F be as above. Then G/F is solvable and F is w-
solvable (since it is free). Hence the kth group G® of the derived series
of G is in F so that G®t» C F™, Thus G is w-solvable. Moreover, if
G is w-solvable, each subgroup is w-solvable, and therefore 4; finite
implies 4; solvable.

THEOREM 5. Let G be an arbitrary nontrivial free product and H™V
a subgroup having finitely many conjugates H;. Then NH ;1.

ProOF. Let 4 be one of the factors of G, and let a €4, a#1, vEG.
Then v—lavEA implies v&A4. For, let v=>5b:b; - - - b, be the reduced
form of v in the free product G. Then v~lav will have syllable length
>1 unless 5EA. In that case b;'abiEA4, and its conjugate by
by - - - b,is in A. Therefore, by induction, b, - - - b, and so v must be
in 4. Consequently, the normalizer of a subset of a conjugate of 4
must be in that conjugate of 4.

Moreover, if & is not in a conjugate C; of a factor of G, then the
normalizer Ny of & is infinite cyclic. For, the preceding remark implies
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that N, is disjoint from the C;, which in turn implies (by the Kurosh
Subgroup Theorem) that N, is a free group. Since every element of
N, commutes with %, & must be in each cyclic free factor of N,.
Therefore, NV, is infinite cyclic.

Next, suppose H, K (1) are normal subgroups of S, a subgroup
of G not contained in any C;. Then IINMK#1. For otherwise, each
element of 77 commutes with each element of K. If H intersects some
C; in more than the identity, then KCC; and therefore SCC;.
Hence 3h&H, with & in no C;, and KCN,. Then K and the cyclic
group generated by % intersect nontrivially, since IV, is infinite cyclic.
Thus HNK #1.

Finally, let Hy, - - -, H, be the conjugates of H. Now Ng, (the
normalizer of H;) is of {.i. in G and so N=} Npg, is of {.i. in G. Since
H, is infinite, N(MH;#1. But since NV is in no C; (C; cannot be of {.i.
in G) we can apply the remark of the preceding paragraph to obtain
N H;=0r (NN\H,;) 1.

COROLLARY 5. Let G be a free product of finite type and let H be a
f.g. subgroup. Then the following three conditions are equivalent:

(a) H 1s of fa.,

(b) H has finitely many conjugates, and

(c) H contains the dth powers of all elements of G for some d> 0.

Proor. That (a) and (b) are equivalent follows from Theorems 1
and 5. For the equivalence of (a) and (c) see [5].

COROLLARY 6. Let G be a free product of cyclic groups. If two elements
of G commute then they must be powers of the same element.

In particular, taking G to be the modular group, it follows that if
two unimodular 2 X2 integral matrices commute then they must be
powers of the same unimodular matrix. This result was first proved
by K. Goldberg [1] and later generalized by O. Taussky and J. Todd
[11] to matrices over a complex quadratic field. The methods used in
both papers are matrix methods.

That a non-normal subgroup H of a free product can be of infinite
index and yet have only finitely many conjugates can be seen as
follows: Let F be the free group on @, b, and let K be the subgroup of
index 2 in F consisting of all words of even length. It can be shown
that K is freely generated by a?, ab, ba. Let H be the normal sub-
group of K generated by ab. Clearly K:H, and hence F:H is infinite.
Now a~!(ab)a=ba is not in H. Therefore the normalizer of H in F
is just K. Thus H is of infinite index in F and yet has only two
conjugates.
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Let G be an extension of a f.g. free group F by a finite group. Using
the same methods we could conclude: G is hopfian; G/F is a p-group
implies G is w-nilpotent; G/F is solvable implies G is w-solvable.
Theorems 1 and 5 hold for G if we assume the subgroup H is infinite.
This last remark implies that the Braid Group can not be a finite ex-
tension of a free group, since it contains a f.g. infinite normal sub-
group of infinite index, namely the normal divisor N, the quotient
group of which is the mapping-class group of a sphere with » holes,
n being the degree of the Braid Group. (See Magnus [7].)
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