
ON FREE PRODUCTS1

A. KARRASS AND D. SOLITAR

We prove several theorems for free products most of which are

generalizations of results known for free groups.

Let G be a nontrivial free product of finitely many groups Ai each

of which is a finite extension of a free group P,- of finite rank ^0.

Then we call G a free product of finite type. In particular a free product

of finitely many finite groups is of finite type. In what follows "f.i."

denotes "finite index" and "f.g." denotes "finitely generated."

Theorem 1. Let G be a free product of finite type and H^l, a f.g.

subgroup of G. If H is normal (or more generally if H contains a non-

trivial normal subgroup of G) then H is of f.i. in G.

Proof. Let F be the normal subgroup of G generated by the Fi

and the commutators [Ai} A,] (i^j). We show F is a free group.

For, by the Kurosh Subgroup Theorem (see [6]), F is the free prod-

uct of a free group and the intersections of F with various conjugates

of the Ai. The intersection of F with a conjugate of Ai is a conjugate

of F(~\Ai. It therefore suffices to show FC\Ai is free. Consider the

natural homomorphism v of G onto G/F. Now G/F is isomorphic to

the direct product of the groups Ai/Ft. Moreover, under v, At is

mapped canonically onto Ai/Fi. Hence FC\Ai, which is the kernel

of v restricted to Ai, must be Ft. Clearly then F is a free group of f.i.

in G.

Let Nt±1 be a normal subgroup of G contained in H. Then N

must be infinite. For otherwise, applying the Kurosh Subgroup Theo-

rem, we would have A^ contained in a conjugate of some A{. But then

the normalizer of N would also be in this conjugate (see proof of

Theorem 5), contrary to N being normal in G. By the isomorphism

theorem N/Nf\F~NF/F and H/HC\Fc~HF/F. Hence NC\F is of
f.i. in N so that AY^P^l. Also HC\F is of f.i. in the f.g. group H,

and so HC~\F is f.g. (see Schreier [9]). Thus we have HC\F is a f.g.

subgroup of a free group G containing N(~\F, a nontrivial normal

subgroup of F. Consequently (see [5]), HC\F is of f.i. in F and so H

is of f.i. in G.

Corollary 1. Let G be a free product of finite type, and H a f.g.
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subgroup. If H is of infinite index then the intersection of the conjugates

of H must be 1.

Corollary 2. // G is a free product of finite type, and Hi, H2 are

f.g. subgroups, then Hif\H2 is f.g.

Proof. First observe that if G is any group, K a subgroup of f.i.,

II a f.g. subgroup, then HC\K is f.g., since HC\K is of f.i. in II.

Now let F be as in the proof of Theorem 1. Then Hi(~\F, H2C\F

are f.g. subgroups of the free group F and therefore Hi(~\H2r\F is f.g.

(see Howson [4]), and is of f.i. in HiC\Ht. Hence a set of generators

for Hi(~\H2C\F together with coset representatives for HiC\II2

mod Hi(~\H2r\F constitutes a finite set of generators for Hif^H2.

In particular, taking G to be the modular group, we see that the

intersection of two f.g. groups of unimodular 2X2 integral matrices

is f.g.

Theorem 2. // G is a free product of finite type, then G is hopfian,

i.e. Gc^G/N implies N=l.

Proof. Let Gk denote the intersection of all subgroups of G of in-

dex ^k. Then D" Gk = l. For if F is as above, then the intersection

of the subgroups of f.i. in F (and therefore in G) is 1 (see e.g. Kurosh

[6]). Let G^-G/N and let v be the natural homomorphism of G onto

G/N. Since G is f.g. it has only finitely many subgroups of f.i. ^k

(see Hall [2]) and the number of these is the same as the number of

subgroups of f.i. ^k in G/N. But the pre-image under v of such a

subgroup of G/N is a subgroup of G, of f.i. ^k, and containing N.

Hence G/OiV for each k, and so iV= 1.

Corollary 3. If G is any f.g. group such that the intersection of its

subgroups of f.i. is 1, then G is hopfian.

Corollary 4. Let G be any f.g. group and let N be the intersection

of its subgroups of f.i. Then G/N is hopfian, and moreover G/N~G/K

implies N = K.

Proof. Clearly the intersection of the subgroups of f.i. in G/N is

1, and so G/N is hopfian. Moreover, G/N and therefore G/K, have

as many subgroups of f.i. m as G has. Hence, as in the proof above,

each subgroup of f.i. in G contains K. Therefore NZ)K so that

G/K~G/N~(G/K)/(N/K). But since G/N is hopfian, G/K is hop-

fian and so N = K.
That Theorem 2 does not hold for any f.g. nontrivial free product

follows immediately from the existence of a f.g. non-hopfian group H

(see Neumann   [8]  or Higman   [3]). For, let H~H/K, K^l.  If
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G = H*L, L any f.g. group and N the normal subgroup of G gener-

ated by K, then G/N~(H/K) * L~H* L = G.
A group G is w-nilpotent (co-solvable) if the intersection of the groups

of the lower central series (derived series) is the identity. Next a

generalization of a theorem of W. Magnus.

Theorem 3. If G is a free product of finite type and each Ai is a

prime power extension of Fi corresponding to the same prime, then G is

w-nilpotent. Moreover, if the Ai are finite, then G is co-nilpotent if and

only if the Ai are prime power groups corresponding to the same prime_

Proof. Let F be as above. If the Ai/Fi are /'-groups, then G/F

is a /'-group. Form the groups Qo = F, Qj+i = the intersection of all

normal subgroups of index p in Qj. We may now proceed as for free

groups (see Hall [2]) to obtain f\Qj=l and that the intersection of

the groups of the lower central series of G is 1.

Now, if some At has an element of order p, and some Aj (j^i) has

an element of order q, p, q distinct primes, then G has a subgroup

which is the free product of a cyclic group of order p by a cyclic group

of order q. This group is not w-nilpotent (see Takahasi [lO]). Hence

G cannot be w-nilpotent. In particular if the Ai are finite, they must

all be ^-groups.

Theorem 4. If G is a free product of finite type and each Ai/Fi is

solvable, then G is co-solvable. Moreover, if the Ai are finite, then G is

co-solvable if and only if the A i are solvable.

Proof. Let F be as above. Then G/F is solvable and F is w-

solvable (since it is free). Hence the &th group Gm of the derived series

of G is in F so that G(*+M)CP("). Thus G is co-solvable. Moreover, if

G is co-solvable, each subgroup is co-solvable, and therefore Ai finite

implies Ai solvable.

Theorem 5. Let G be an arbitrary nontrivial free product and H^v

a subgroup having finitely many conjugates Hi. Then fliJi^l.

Proof. Let A be one of the factors of G, and let aEA, a7*1, vEG.

Then v_1avEA implies vEA. For, let v = bjj2 • • • br be the reduced

form of v in the free product G. Then v~1av will have syllable length

>1 unless hEA. In that case b^abiEA, and its conjugate by

b2 ■ ■ ■ br is in A. Therefore, by induction, b2 ■ ■ • br and so v must be

in A. Consequently, the normalizer of a subset of a conjugate of A

must be in that conjugate of A.

Moreover, if h is not in a conjugate Cj of a factor of G, then the

normalizer Nh of h is infinite cyclic. For, the preceding remark implies
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that Nk is disjoint from the Cj, which in turn implies (by the Kurosh

Subgroup Theorem) that Nk is a free group. Since every element of

Nh commutes with h, h must be in each cyclic free factor of N/,.

Therefore, Nk is infinite cyclic.

Next, suppose H, K (r^l) are normal subgroups of S, a subgroup

of G not contained in any Cj. Then HC^K^l. For otherwise, each

element of II commutes with each element of K. If II intersects some

C;- in more than the identity, then KCCj and therefore SCCj.

Hence 3hCH, with h in no Cj, and KCNk. Then K and the cyclic

group generated by h intersect nontrivially, since Nn is infinite cyclic.

Thus iJrVK ?*1.
Finally, let Hi, ■ ■ ■ , Hn be the conjugates of H. Now Nh{ (the

normalizer of Hi) is of f.i. in G and so N=0" Nh{ is of f.i. in G. Since

Hi is infinite, NCMIi^l. But since N is in no Cj (Cj cannot be of f.i.

in G) we can apply the remark of the preceding paragraph to obtain

Cin1Hi = r\"(Nr\Hi)^l.

Corollary 5. Let G be a free product of finite type and let H be a

f.g. subgroup. Then the following three conditions are equivalent:

(a) His of f.i.,
(b) H has finitely many conjugates, and

(c) H contains the dth powers of all elements of G for some d>0.

Proof. That (a) and (b) are equivalent follows from Theorems 1

and 5. For the equivalence of (a) and (c) see [5].

Corollary 6. Let G be a free product of cyclic groups. If two elements

of G commute then they must be powers of the same element.

In particular, taking G to be the modular group, it follows that if

two unimodular 2X2 integral matrices commute then they must be

powers of the same unimodular matrix. This result was first proved

by K. Goldberg [l ] and later generalized by O. Taussky and J. Todd

[ll ] to matrices over a complex quadratic field. The methods used in

both papers are matrix methods.

That a non-normal subgroup H of a free product can be of infinite

index and yet have only finitely many conjugates can be seen as

follows: Let F be the free group on a, b, and let K be the subgroup of

index 2 in F consisting of all words of even length. It can be shown

that K is freely generated by a2, ab, ba. Let H be the normal sub-

group of K generated by ab. Clearly K'.H, and hence F:H is infinite.

Now a~l(ab)a = ba is not in H. Therefore the normalizer of H in F

is just K. Thus H is of infinite index in F and yet has only two

conjugates.
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Let G be an extension of a f.g. free group F by a finite group. Using

the same methods we could conclude: G is hopfian; G/F is a p-group

implies G is co-nilpotent; G/F is solvable implies G is co-solvable.

Theorems 1 and 5 hold for G if we assume the subgroup II is infinite.

This last remark implies that the Braid Group can not be a finite ex-

tension of a free group, since it contains a f.g. infinite normal sub-

group of infinite index, namely the normal divisor N, the quotient

group of which is the mapping-class group of a sphere with n holes,

n being the degree of the Braid Group. (See Magnus [7].)
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