ON THE NONCONVERGENCE OF FOURIER SERIES
SULAXANA KUMARI

1. Let the Fourier series of an even integrable function ¢(¢), peri-
odic with period 2w, be

1.1) o() ~ ao/2 + 2 an cos nl.
n=1

The undermentioned convergence criteria 4 and B, for (1.1), have
been given by Wang [2].

THEOREM A. If

t
(M) f é(u)du = o), ast—0,k> 1,
0
and
(i1) an > — Knlk,

for some K >0, then the series (1.1), at t=0, converges.

THEOREM B. If

t 1
)’ f o(u)du = o(t/log 7), ast—0,
0
and
(i)’ a, > — Klog n/n,

for some K >0, then the series (1.1), at t=0, converges.

Wang [2] has also framed examples showing that % in condition @)
of Theorem A cannot be replaced by any &’ <k and condition (i)’ in
Theorem B cannot be replaced by the condition

@11)” a, = of{n~1(log n)Q}.

Hsiang [1] has recently tried to bridge the gap existing between
conditions (ii)’ and (ii)”” by framing examples to prove the following
theorem:

THEOREM C. There exists an even function ¢(t), satisfying (i)', whose
Fourier series diverges at t=0, while
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(ii)"” an = o{ (log n) 1+"n‘1}, for any n > 0.

The object of the present paper is to prove by framing examples
that Theorems A and B of Wang are best possible in the sense that
neither o’s in conditions (i) and (i)’ can be replaced by O’s, nor condi-
tions (ii) and (ii)’ can be replaced by

(iii) a, = O(nw='%p,) and (iii)’ e, = O(log n-n"'p,),

respectively, where { p,.} is an arbitrarily chosen sequence of num-
bers, tending to infinity with #, however slowly.

Obviously the implication of Example 4, of this paper, showing
the best possibility of (ii)’, is of more far-reaching character than that
of Hsiang.

My best thanks are due to Dr. B. N. Prasad for his valuable guid-
ance during the preparation of this paper.

2.1. We shall prove the following theorems:

THEOREM 1. There exists an even, integrable, periodic function ¢(t),
such that

t
f o(uw)du = O(1%), ast—0, k> 1,
0

and a,=0(n"1*), whose Fourier series, at t =0, does not converge.

THEOREM 2. There exists an even integrable periodic function ¢(t),
such that (1) is satisfied and a,=0(n"*p,), {pn} being any arbitrarily
chosen sequence of numbers, tending to infinity with n, however slowly,
whose Fourier series, at t =0, diverges.

THEOREM 3. There exists an even integrable periodic function ¢(t)’
such that

¢ 1
f o(u)du = O<t/log 7)' as it — 0,
0

and a,=O0(log n/n), whose Fourier series, at t =0, does not converge.

THEOREM 4. There exists an even, periodic and integrable function
&(t), such that (i)’ is satisfied and a,=O0(log n-n"'pa.), {p,,} being any
arbitrarily chosen sequence of numbers, tending to infinity with n, how-
ever slowly, whose Fourier series diverges at t=0.

2.2. In order to prove Theorem 1 we frame the following example:
EXAMPLE 1. Let the sequences {\,} and {a.} be chosen such that
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M= (n+ 1),
T
Qn = 7 [[()‘n) l_llk]](kn)_ly

where the symbol [[p]] denotes the integral part of p if [p] is odd and

the next integer greater than [p] if [p] is even, [p] being the integral

part of p.* The interval (3o, o) will be denoted by I, for n=1,2, - - - .
We now define an even function ¢(t), such that

#(t) = (—1)" sin (\at),
for values of t lying in I, and ¢(t) =0, everywhere else in (0, ).
It is easy to see that ¢(¢), being bounded, is integrable (L) over
(0, ). Also
dwdu = (—1) ) (cos M) ik, = 0.
I;

Hence if ¢ lies in I, then

ft¢(u)du = (—1)7*1 cos (A\pt)/Ap, = O(F).

Again
2 [ 4
ay = — f o(8) cos ntdt
wJo
2 = ,
(2.2.1) =— (—1)‘f sin A¢- cos ntdt
T i=1 I;
= 2 Jit+ Ja+ 22 Ty, say,
istn >tntl

where {, is an integer such that Ay, £# <X; ;1. Since the total varia-
tion of sin (\if) in I; is O(\ia), it follows by the second mean value
theorem that

22 Ji= 2 O(ai/n)

is8n isln

(2.2.2) = iszr,. 0({ (i + 1)1} 1-1/k/p)

= 0({ (¢ta + 1)1} 3-11%/n)
= O(n-11¥).

Next, if ({»+2)!—n <n'*, then by the second mean value theorem

1 This notation will be used throughout this paper.
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(2.2.3) Trerr = O (§n + 2)1} 171 = O 1%
and if ({,+2)!—n=nl*, then
(2.2.4) Teorr = O(1/{(tn + 21 — u}) = OG—1/%.
Also

1-511]": §‘3+ o(1/{G+ Dt — )
@29 - T owlion) = ou/.

Hence it follows from (2.2.1) - - - (2.2.5) that a,=0(n"V*).

We now show that S, does not converge as n— «, where S, de-
notes the nth partial sum of the Fourier series of ¢(¢), at t=0. By
well known arguments

2 T
Sx, = —f d(6)¢7! sin Agtdt 4 o(1)
T Jo

2 0
= =3 (=1 | £ sin Nt-sin Mtde + o(1)

T o=l I;
= i Gi + o(1), say.
i=1
It follows by the second mean value theorem that
; G; = }::: 0(1/{ai(da — N)})
(2.2.6) = 00/ {0 — ad)])
= o(1),

and, since the total variation of sin A\t in I; is O(\,;), that

(2.2.7) > Gi= i O(nati/ (M) = o(1).

>n i=n+1
Finally

2

L= (—1)" — in? N\

G (-1 7I_flnsm)\tt ¢
(2.2.8) _ f (1/t — cos (2\0)/0)dt

g In
(=

= log 3 + o(1).
™
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Collecting the results (2.2.6) - - - (2.2.8), we get
_ (=1
T

An

log 3 4+ o(1),

which oscillates between (log 3)/m and — (log 3)/m, as n— .
This establishes Theorem 1.

2.3. Theorem 2 will be proved by means of the following example:
ExAMPLE 2. Let

M= (n+ 1)

d» = [[(en)'2]],

for all values of p such that {n < p <Cat1, where {¢n} is the sequence of
integers such that e, =n <A¢.41, and {pn

is an arbitrarily chosen se-
quence of numbers tending to infinity with n, however slowly, and let

oy =

([Qan) =2 5] ] A2,

T
2
T

Olop—1 =

; [[\2a) = VEdgn ] [ (A2m) 2

The interval (ozn, azn—1) will be denoted by Isn.
We now define an even function ¢(t), such that
¢(l) = sin (indznt),
for t lying in Iz, and ¢(t) =0 everywhere else in (0, 7).

It is easy to see that ¢(¢), being bounded, is integrable (L), and for
t lying in Is,

f t¢a(u)du = 0{1/(\2udza)} = o(t¥).

Next
= 2 Ju+ T+ 2 Ju
2istn 2> tat1
where
2 .
Jzi = sin (Xzidzil) cos nidt.
T Iy

The term J; 41 exists only if {» is odd. Proceeding exactly as in Ex-
ample 1 we get

2158,

2 Jai = Of{(( + D)= Ven1(d;,)?} = O(nVkp,).
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Supposing that {, is odd we have, if ({a+42)!d;, 41 —n<n'*/p,, then
Trutr = O (6n + D114, + 1)%) = O(nVrp,)
and if ({»+2)!d;, 1—n=n'*/p,, then
Tewrr = 01/ {Neprdrn — 1)) = O(w'1%p,).
Also it follows by easy calculations that

2 Ju= 0(1/n),

2i>¢p+1

which yields that a,=0(n"Y*p,).
Writing
S)‘2nd2n = Z G?i + 0(1))
=1
where

2
Gy = — 171 sin (Agidait) - sin (Nond2nd)dl.

™ Y Iy

we obtain easily

2 Gu, 2 G = o(1),

i<n >n
as in Example 1, and
1
Gon = — {t—l — 171 cos (2>\2nd2nl)}dl

™ Ion

1
= — log (azn—1/a2.) + o(1)
T

~ A log p. + o(1), (A4 being a constant)

— ©, as p, — o,
which establishes Theorem 2.

2.4. Without entering into the details of illustration, we state
Examples 3 and 4 which, following an analysis similar to that used in
the illustrations of Examples 1 and 2, will go to prove Theorems 3
and 4, respectively.

EXAMPLE 3. Let

o= {4+ DY,

o = } [[log AJ]A),
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and I; denote the interval (o, 3o;). We now define an even function
&(t), such that

o(f) = (—1)isin Ay,

for values of t lying in I; and ¢(t) =0 everywhere else in (0, 7).
ExAMPLE 4. Let

= {(” + 1) '} !7
Q2 % [[log Aza]](A2n)72,
Qg = —;r‘ [[log Aza]]d2n(N2a),

where

= [[(en)2]]
for all values of p such that ¢, S p=¢n+1, where {;,.} is the sequence of
integers such that N\e, En <N, 1. Let Io, denote the interval (cign, Qan_i).
We now define an even function ¢(t), such that
¢(2) = sin (Apidait),
Sfor values of t lying in I,; and ¢(t) =0 everywhere else in (0, ).
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