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1. Let the Fourier series of an even integrable function (j>(t), peri-

odic with period 2x, be

CO

(1.1) <p(t) ~ ao/2 + 22 <z» cos nt.
n=l

The undermentioned convergence criteria A and B, for (1.1), have

been given by Wang [2].

Theorem A. If

(i) f   4>(u)du = o(tk), ast^0,k> 1,

and

(ii) an > - Kn'1'",

for some K>0, then the series (1.1), at t = 0, converges.

Theorem B. If

(i)' I   <p(u)du = o(t/\og— J, asl-^0,

and

(ii)' a„ > — K log n/n,

for some K>0, then the series (1.1), at t = 0, converges.

Wang [2] has also framed examples showing that k in condition (i)

of Theorem A cannot be replaced by any k' <k and condition (ii)' in

Theorem B cannot be replaced by the condition

(ii)" an = o{n-1(\ogn)2}.

Hsiang [l] has recently tried to bridge the gap existing between

conditions (ii)' and (ii)" by framing examples to prove the following

theorem:

Theorem C. There exists an even function 4>(t), satisfying (i)', whose

Fourier series diverges at t = 0, while
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(ii)'" a„ = o{(\og ny+^rr1}, for any r\ > 0.

The object of the present paper is to prove by framing examples

that Theorems A and B of Wang are best possible in the sense that

neither o's in conditions (i) and (i)' can be replaced by O's, nor condi-

tions (ii) and (ii)' can be replaced by

(iii) a„ = 0(n~llkpn)    and    (iii)' a„ = 0(log n-n~lp„),

respectively, where {p„} is an arbitrarily chosen sequence of num-

bers, tending to infinity with n, however slowly.

Obviously the implication of Example 4, of this paper, showing

the best possibility of (ii)', is of more far-reaching character than that

of Hsiang.

My best thanks are due to Dr. B. N. Prasad for his valuable guid-

ance during the preparation of this paper.

2.1. We shall prove the following theorems:

Theorem 1. There exists an even, integrable, periodic function <p(t),

such that

I   d>(u)du = 0(lk), as t -> 0, k > 1,
J o

and a„ = 0(n~llk), whose Fourier series, at t = 0, does not converge.

Theorem 2. There exists an even integrable periodic function <f>(t),

such that (i) is satisfied and an = 0(n~1/kp„), {pn} being any arbitrarily

chosen sequence of numbers, tending to infinity with n, however slowly,

whose Fourier series, at f = 0, diverges.

Theorem 3. There exists an even integrable periodic function 4>(t)'

such that

d>(u)du = 0 ( //log — ), as t —> 0,

and a„ = 0(log n/n), whose Fourier series, at t = 0, does not converge.

Theorem 4. There exists an even, periodic and integrable function

4>(t), such that (i)' is satisfied and an = 0(log n-n~lpn), {pn} being any

arbitrarily chosen sequence of numbers, tending to infinity with n, how-

ever slowly, whose Fourier series diverges at t = 0.

2.2. In order to prove Theorem 1 we frame the following example:

Example 1. Let the sequences {X„} and {an} be chosen such that
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Xn= (n+ 1)!,

«» = J [[(Xn)1-1/*]](XB)-1,

where the symbol [[p]] denotes the integral part of p if [p] is odd and

the next integer greater than [p] if [p] is even,  [p] being the integral

part of p.1 The interval (3a„, an) will be denoted by In,for n = l,2, • ■ • .

We now define an even function 4>(t), such that

<b(l) = (-l)"sin(Xn0,

for values of t lying in I„, and (p(t) =0, everywhere else in (0, ir).

It is easy to see that (/>(t), being bounded, is integrable (L) over

(0, w). Also

I   4>(u)du = (-l)'+1(Xf)~1(cosX,0<«< = 0.

Hence if t lies in Iv, then

f (p(u)du = (-l)^1 cos (\Pt)/\p = 0(tk).
J a

Again

2   r*
an = — I    4>(t) cos ntdt

t J 0

2   °° r
(2.2.1) =— 52 (-1)' I    sin \it-cos ntdt

T   t=l J Ti

= 52 J* + Jin+i + 52 Ji> say>
•Stn i>t»+l

where f„ is an integer such that Xf„^w<Xj-n+i. Since the total varia-

tion of sin (Kit) in It is 0(Xja,), it follows by the second mean value

theorem that

E Ji = 52 0(W«)
»Sfn iStn

=    ZO(((i+l)l)H'V»)

= 0({(f„+ 1)1} »-«*/•)

= Oitr1'").

Next, if (fB + 2)! — n<nllk, then by the second mean value theorem

1 This notation will be used throughout this paper.
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(2.2.3) JM1 = 0(n^{(Sn + 2)!}1-1'*) = 0(n~llk\

and if (tn + 2)\-n^n1'k, then

(2.2.4) /fn+1 = 0(l/{(f„ + 2)\ - n}) = Odr^.

Also

Z   Ji=    H   0(l/{(t+l)!-»})
(2 2 5) i>f"+1 iSf"+2

=    E   0(l/{t(t)!}) =0(l/»).
tif„+2

Hence it follows from (2.2.1) • • • (2.2.5) that a„ = 0(w-1/ft).

We now show that S„ does not converge as w—> «>, where Sn de-

notes the nth partial sum of the Fourier series of <j)(t), at / = 0. By

well known arguments

2   ["
SK = — I    4>(L)rl sin X„fcf/ + o(l)

TT   J 0

2    °° C
= — E (-1); I   <_1 sin Xrf-sin X„/d/ + o(l)

T    i=l •/ J,-

DO

= E ^ + o(l), say.
i=i

It follows by the second mean value theorem that

ECi= I o(i/{«i(x» - Xi)})
(2.2.6) ,<n i=X    .

= 0(n/{an-i(\n-\n-i)})

= o(l),

and, since the total variation of sin \nt in Ii is 0(An«t), that

CO

(2.2.7) T, Gi=   J2    0(Kai/(\iai)) = o(l).
i>n i=n+l

Finally

G„ = (-1)"— I    sin2 \nt-t~ldl
IT J In

(-i)n r
(2.2.8) =-      (1// - cos (2\J)/t)dt

■k      J In

(-l)n

=- log 3 + o(l).
ir
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Collecting the results (2.2.6) • • • (2.2.8), we get

(-l)n

SK = -log 3 + o(l),
ir

which oscillates between (log 3)/ir and —(log 3)/7r, as n—>».

This establishes Theorem 1.

2.3. Theorem 2 will be proved by means of the following example:

Example 2. Let

X„ = (n+ 1)\,

dP = [[(Pn)1/2]L

for all values of p such that f„ g p ^ f„ +1, where {f„} is the sequence of

integers such that Xfn^M<Xfn+i, and \pn} is an arbitrarily chosen se-

quence of numbers tending to infinity with n, however slowly, and let

a2n = j [[(X2n)1-1/4]](X2„)-1,

«2„-i = y [[(x2K)1-1/^2B]](x2n)-1.

The interval (a2n, a2n-i) will be denoted by I2n-

We now define an even function (j>(t), such that

(b(l) = sin (\2nd2nt),

for t lying in I2n, and qb(t)=0 everywhere else in (0, it).

It is easy to see that q>(t), being bounded, is integrable (L), and for

/ lying in I2n,

I   d>(u)du = 0{l/(X2llc?2»)} = o(tk).
J o

Next

On   =     2s   Jli + Jt,,+ \ +        2-1       J»i)
2isfn 2i>f„+l

where

2   r
J2i = — I     sin (\2id2it) cos ntdt.

The term Jtn+i exists only if f„ is odd. Proceeding exactly as in Ex-

ample 1 we get

22 Jn = 0{((f. + l)!)1-1'*^1^)2} = 0(«-i/*p»).
2iSf„
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Supposing that f„ is odd we have, if (f„ + 2) Wr„+i — n<nllk/p„, then

Jln+i = 0(n-l{(?» + 2)l}^'k(dt„ + l)2) = 0(n~^pn)

and if (tn + 2)\dtn+i-n^nltk/pn, then

Jtn+i = 0(l/{\tn+idu+i - »}) = 0(n-u*Pn).

Also it follows by easy calculations that

E   J*i= 0(1/n),
2i>f„+l

which yields that a„ = 0(n~1,kpn).

Writing
cc

■S'Xln'ito  =   E G2i +  0(1),
•j=l

where

2   f
G2i = — I    r-1 sin (X2i^2i0'sin (\2nd2nt)dt.

we obtain easily

E G2i, E G2>- = o(l),
%<n *>n

as in Example 1, and

G2n = — f [r1 - r1 cos (2x2„<M}<^
t Jr2„

1
= — log (a2n-i/a2n) + o(l)

IT

^ A log pn + o(l), (A being a constant)

—> «3, as p„—> oo,

which establishes Theorem 2.

2.4. Without entering into the details of illustration, we state

Examples 3 and 4 which, following an analysis similar to that used in

the illustrations of Examples 1 and 2, will go to prove Theorems 3

and 4, respectively.

Example 3. Let

a>= {d+l)l}l,

at = J [fog Xi]](X,)-1,
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and Ii denote the interval (ai, 3at). We now define an even function

(j>(t), such that

(b(t) = (-l)<sin Xit,

for values of t lying in Ii and 4>(t)=0 everywhere else in (0, w).

Example 4. Let

\n=   {(»+l)l}l,

a2n   =  —   [[log X2n]](X2n)-1,

asn-i = — [[log X2„]]cZ2„(X.2n)~\

where

dP  -   [[(Pn)1/2]]

for all values of p such that fB ̂ p ^fB + l, where {fn} is the sequence of

integers such that Arn^n<\r„+i. Let I2n denote the interval (a2n, a2n~i).

We now define an even function <f>(t), such that

(b(t) = sin (\2id2it),

for values of t lying in I2i and 4>(t)=0 everywhere else in (0, w).
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