
THE BOHR SPECTRUM OF A BOUNDED FUNCTION

H. G. EGGLESTON

C. S. Herz, [2], has conjectured the following result.

If <p(x) is a bounded uniformly continuous function of the real

variable x, then for almost all real values of t,

1   rN
(1) lim - I      exp ( — ilx)(p(x)dx = 0.

jv^»  2 A J _jv

In this note it is shown that this conjecture is correct. The excep-

tional set may however be non-enumerable. The result is a conse-

quence of a connection between the set of values / for which (1) is

false and that for which the nonintegral parts of the sequence \nkt\

are not equidistributed, where nk is an increasing sequence of integers

satisfying nk+i — nk<C for some constant C.

Definitions and Notation. The set of values of / for which (1)

is false will be denoted by T(qb) and any set which is a T(<p) set for a

bounded and uniformly continuous function <p(x) will be said to be

of type I.
The set of values of / for which the nonintegral parts of the sequence

{nkt} are not equidistributed will be denoted by T\nk\. If the se-

quence {nk} is a strictly increasing sequence of positive integers for

which nk+i — nk<C where C is a constant, then the set PJre*} is said

to be of type II.
T will be used to denote an outer measure function in the sense of

Caratheodory.

If I is a real number, [/] denotes the largest integer not greater

than /.

The connection between equidistribution and the property ex-

pressed in (1) is given by the following theorem

Theorem, (a) If the V measure of every set of type II is zero then so

is the T measure of every set of type I.

(b) i/ the T measure of every set of type I is zero then so is the T

measure of every set of type II.

Proof of (a). Suppose that, in contradiction to the statement of

(a), there exists a set T of type I such that T(P) >0, even though the

r measure of every set of type II is zero. Then for the appropriate

bounded and uniformly continuous function </>(x)
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1  I   r"
lim sup-    I     exp ( — itx)<t>(x)dx   >0 t £ T,

N-"»      2N\ J -N

and hence there is a positive number r\ and a subset Ti of T such that

r(r!)>0and

1     |      ~N

(2) lim sup- exp ( — itx)<j>(x)dx > r\ (G Ti.
jv^»    2NI J-n

The integral is written as the sum of eight integrals obtained by con-

sidering separately, the positive and negative ranges of x, the real

and imaginary parts of exp ( — itx), the real and imaginary parts of

<p(x). Of these eight integrals there is at least one for which the cor-

responding upper limit is greater than v/S for all t of a subset T2 of

7\ where Y(T2) >0. Suppose for definiteness that \j/(x) is the real part

of <p(x) and that

l I  rN l
(3) lim sup- \f/(x) cos tx-dx  > — ■« I G. T2.

jv-,»     N I Jo 4

The argument in the other cases is similar.

Since <£(x) is uniformly continuous the same is true of ip(x) and

thus there is a positive number 5 such that

\Hx) -Hy)\ < — v \x-y\ <S.
is

Let M be a positive integer such that M>8/n and define \(x) by

x(x) =       sup       [tp(y)M]/M,     mS ̂  x < (m + 1)8, m — 0, 1, • • •.
m5g»<(m+l)5

Then x(x) is constant throughout the intervals md^x<(m + l)d and

if we denote its value in this interval by am this implies (writing / for

[N/S]-l),

1    Z, 1
lim sup —   E «m(sin mtS — sin (m + 1)18)   > — ??5 | t \       t £ T2.

j—>oo     Jo 8

But the am are rational numbers of the form p/M and they take

at most [2 sup |^(x)| +l]M = K different values. Let {6m,j,} be the

sequence defined by

bm,p = am for those m for which am = p/M

= 0 for all other m.

There are K such sequences {iB,pj corresponding to the different pos-



330 H. G. EGGLESTON [April

sible values of p and the sequence [am\ is the sum of these K se-

quences. It is easy to deduce that there exists a sequence of integers

\mk] such that mk+i>mk, mk+i — mk<C where C is an appropriate

constant, and

(4) lim sup —   22 (sin mklS — sin (mk + l)t8)   > 0, I G Tt
J-">        J    mk£j

where r(r4)>0. But r(r{w^})=0 and thus there is a tE:Tt such

that th^T\mk}. Hence

1    K
lim — 22 Sln (triktS) = 0.

K-+«>   K K=l

Since this implies that

lim sup —   22 (Sln tnkth — sin (mk + l)tb)   = 0
J-"" J     mkSJ

we have a contradiction with (4) and this establishes the correctness

of (a) of the theorem.

Proof of (b). Let T be a set of type II and suppose that T(P) >0

even though the T measure of every set of type I is zero. Then there

is a sequence {nk} and a constant C such that nk+i — nk<C and for

every t(£T the nonintegral parts of \nkt\ are not equidistributed.

By [3] this means that for every t£T there is an integer h such that

1      K
(5) lim sup—   22 exP ( — itikht)    > 0.

K->»     K   k=l

Since r(P)>0 there is a subset of T, Ti for which (5) is true for a

fixed integer h and further T(Pi)>0. There is a positive number 17

and a subset T2 of 7\ such that

1     K
lim sup —   22 exp (-inkhl)   > 77, t G T2, T(T2) > 0.

K->»    K   k=i

There is a subset P3 of T2 such that T( J3) >0 and, for some positive

number 5

1 sin /

3(C+l)*s      /    I

Define the function fk(x) by
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fk(x) = 1 nkh — 1 g x < nkh + 1, k = 1,2, • ■ •,

= 0 all other x.

Define the function \p(x) by

Hx) = E/,(x)
k=l

and let the function 4>(x) be a uniformly continuous function such

that in each interval m^x^m + 1, <j>(x) —\//(x) except possibly for x

lying in two subintervals whose total length is at most r]8/2 and then

for all x it can be seen that

i \ rN i
lim sup- exp ( — itx)d>(x)dx  2: — -qS I £ T3.

ff-=o    2N\J-n 2

Thus T3 is a subset of a set of type I and we have a contradiction

since Y(T3) >0 whereas Y(T) =0 for every set T of type I.

This completes the proof of (b).

Remarks (1). Herz's conjecture is an immediate consequence of

Weyl's theorem in [3] that {nkt} is equidistributed for almost all t.

It has recently been shown by P. Erdos and S. J. Taylor [l] that the

set of t for which {nkt} is not equidistributed has measure zero with

respect to the Hausdorff measure defined by (log (l/0)~1-<, e>0

provided nk+i — nk<C ior a constant C. Thus the exceptional set t

in (1) also has zero measure with respect to this measure function. In

particular it is of zero fractional dimension.

(2) The connection between the two types of exceptional sets can

be made even closer. If for some outer measure function Y the sup.

of Y(T) where T is of type I is finite say F then this number is also

the sup. of Y(T), T of type II. The argument is similar to that used

above with the observation that if two sets Ti and T2 are subsets of

rjw™} and T{nk2)} respectively then we can find a third sequence

{nf}} such that all of TiKJT2 except a subset of arbitrarily small Y

measure is contained in rjwf}.

(3) That the exceptional set of values of t may be nonenumerable

follows from the results of Erdos and Taylor or may be proved

directly by constructing a function for which the exceptional set con-

tains a residual C70 and therefore is nonenumerable. For example let

{tk}, k = l, 2, • ■ ■ be a sequence of points dense in the interval

l^t^2 and define <j>(x) by

4>(x) = exp (itkx) 42*7r ̂  xtk ^ 42*+17r,

= 1 all other x.
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THE MULTIPLICATION PROBLEM FOR
DIRICHLET SERIES

J. P. TULL

E. Landau [l, §214] has given a theorem on the multiplication of

Dirichlet series to the effect that if a, P, p, t, are real numbers with

min (p, r)>max (a, (3) and if 22a"£»s converges for cr>a, absolutely

for cr>p, 22c''"£nS converges for a>P, absoutely for o>t, then the

Dirichlet product of these two series converges for

or — aP
cj > - •

p + t — a — P

(If min (p, t) ^ max (a, P) then we have convergence for

cr>max (a, P).) H. Bohr [2, Theorem XIX] gave an example to

show that in the case a=/3 = 0, p=r = l the above conclusion cannot

be improved.

In this paper we shall use a variation of Bohr's example to give,

for each a, P, p, r with min (p, r)>max (a, P), two Dirichlet series

whose product has abscissa of convergence exactly

pr — aP

p + t — a — P

Thus we show that Landau's theorem is the best possible in all cases

(the trivial cases being handled similarly).

Bohr [2, Theorem XVII] defines a certain Dirichlet series 22amw_*

as follows. Let (an), (tn), (Pn), (jn) be sequences of positive integers

such that for all re^ 1
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