
HOMOTOPY EQUIVALENCE OF FIBER BUNDLES

M. L. CURTIS AND R. LASHOF

1. Introduction. A classification of bundles has been given by

Lashof [3] by mapping the loop space of the base into the structure

group. This is extended here to a classification of bundles under fiber

homotopy equivalence. The result does not agree with Theorem 10.1

of [l], and that theorem can be seen to be false by simple examples.

(The error responsible occurs in the next-to-last sentence of the proof

of Lemma 8.3.)

Since tangent sphere bundles given by different differentiable

structures on a manifold are fiber homotopy equivalent (see [9] and

[6]) our classification theorem yields some characteristic classes

which are independent of the differentiable structure. These classes

are in the cohomology ring of the loop space of the manifold instead

of the manifold itself.1 The classification theorem is given in §2 and

application to sphere bundles is made in §3.

2. The classification theorem. We use the notation and results of

[3]. We require that the base space B be a polyhedron because this

allows us to use a result of A. Dold [2] to simplify both the statement

and proof of the theorem. We will assume that the fiber F is locally

compact and let M be the space of maps F—>F which have homotopy

inverses, topologized with the compact-open topology. Finally, we

assume that the structure group G has the compact-open topology

so that there is an inclusion map j: G—+M. We recall that for a bundle

(E, B, F) one obtains a homomorphism <p from the groupoid fi of

loops in B into the structure group G.2 Let P be the space of paths

from a point bo of B.
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1957.
1 These classes are just the suspension in the space of paths of the bundle char-

acteristic classes. For, if (Eg, Bo, G) is the universal bundle for the group G, the map

/: B—>Bo which induces a given bundle (E, B, G) with group G, defines a fiber pre-

serving map/: (P, B, fi)->(-EG, BG, G) by lifting the map P-*B-*BG into P->£<?.

It is easy to see that the map/ . £1—>G is homotopic to the groupoid homomorphism

0: 0—>G of the given bundle. Since suspension on cohomology commutes with the

fiber preserving map (/ )*, and since the cohomology of G is generated by the suspen-

sion of the generators of the cohomology ring of Bo (as proved by A. Borel), <j>*(H*(G))

= (y)*{H*(G)) is just the suspension of the characteristic subring of H*(B).

2 Since we are taking B to be a polyhedron, it follows from Milnor's construction

[5] that Q may be replaced by a group and 0 by a homomorphism of that group

into G. One then gets a theorem analogous to Theorem 2.1 with Milnor's space E

[5, p. 274] replacing the path space P.

178



HOMOTOPY EQUIVALENCE OF FIBER BUNDLES 179

Theorem 2.1. Two bundles (Eu B, F) and (E2, B, F) with structure

group G are fiber homotopy equivalent if and only if there exists a map

\p:P-+M such that

jMP, q)t(q) = f(P)j<t>i(p, q)-

Proof. We recall from [3, p. 442] that <pi and <p2 arise from bun-

dle maps Rt: PXF-^Ei, i—l, 2, by the definition <pi(p, q) =p*~lqf
where p* denotes the map R{\pXF.

Given a fiber homotopy equivalence /: Ex—*E2, we define ^/(p)

= p*~lfp*. Let (p, q)C& and we calculate

+(q) = qf-W = qr^pf-ypfpf-iqi*

= 4>i(q, P)Kp)4>i(P, q)-

Since <p2(q, p) is the inverse of <p2(p, q), $ has the required property.

Conversely, suppose we are given such a map \(/. For each fiber

Fb of Ei we choose a path p from b0 to b and define/| Fb = p*\p(p)p*~1.

Then / is well defined, for if we had chosen a path q instead of p we

would have

• * #_ 1 $ #_1

f\Fb= q#l<(q)qi     = qt4>t(q, p)^(p)4>i(P, ?)?i

= qtqt   p$P(p)pi   qiqi     = piip(P)pi    ■

Since \p(p)CM, f is a homotopy equivalence on each fiber. It follows

from [2, p. 120] that/ is a homotopy equivalence, and the theorem

is proved.

Let H*(A) denote the integral cohomology ring of a space A.

Corollary. // Ei and E2 are fiber homotopy equivalent, then

(j<pi)*(H*(M)) and (jcp2)*(H*(M)) are isomorphic subrings of H*(Sl).

Proof. By Theorem 2.1 there exists a map \{/: P—*M such that

j<pt(p, q)$(q) =yP(P)j<t>i(P, q)- We shall show that this implies our re-

sult. Let T: PXI-^P be the standard contraction of P to the null

path n0:1—>bo. Define a homotopy </>: QXI-^>M by

(+(T(p, 1 - 2t))j<Pi(P, q) for 0 g / g 1/2,
4>(P, 9, t) = <

(JMP, q)4>(T(q, 2t - 1)) for 1/2 £ t ^ 1.

Then <p is well defined since <p(p, q, 1/2) =4/(P)J4>i(P, 9) =J<Pi(P, 9)4/(a)-
Also we see that
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HP, q, 0) = $(no)jd>i(p, q),

<t>(P, q, l) = j<pi(p, q)^(no)

so that ip(n0)j(pi is homotopic to j(p2^(n0). This proves the corollary,

since \^(n0) has a homotopy inverse.

Remark. If/is homotopic to the identity on the fiber over b0 then

^(«o) is the identity and (j4>i)* = (j<p2)*- In particular, if the fiber is a

sphere, then the orientations of the fibers of the two bundles may be

so chosen that this is the case.

3. Application to sphere bundles. Thorn [9] and Nash [6] have

shown that any two differentiable structures on an n + 1 manifold

give homotopy equivalent tangent sphere bundles. In view of the

corollary in the preceding section, the corresponding maps j<pi and

j(p2 give isomorphic subrings (j4n)*(H*(M)) of the characteristic sub-

rings 4>i(H*(On+i)), where On+i is the orthogonal group. Hence we

are led to study the cohomology homomorphism induced by the in-

clusion On+i-^M. Both On+i and M consist of two equivalent com-

ponents so we may as well study the inclusion i: Rn+i-^H, where

Rn+i is the rotation group of S„ and H consists of all maps Sn-^Sn

of degree +1.

If we choose a point yoESn, then the map ir:H-^Sn defined by

ir(h) =h(y0) is a fibering (see [10, p. 461]). We have

<t> i       ir
il —> Rn+l —> H —> Sn

and, since (up)*(H*(H)) is unique (up to isomorphism) for homotopy

equivalent bundles, so is (irup)*(H*(Sn)). Information about the

homomorphism (iri)*: Hn(Sn)—>Hn(Rn+i) is at hand (see [8, p. 120]

and [4]), and combines with the results above to give the following

information.

Theorem 3.1. The image (iri)*(Hn(Sn))EHn(Rn+i) is a homotopy

invariant. If n is odd, it is infinite cyclic and if n is even it is cyclic of

order 2.

Corollary 3.1. If the base space is Sn+i with n odd, the even elements

of II"(Q,) are homotopy invariants.

In the remainder of this section we will obtain information about

the map w: H—>5„, with the idea that it combines with information

about iri to give information about i.

Theorem 3.2. // n is odd, then HP(II, Z) is finite for all p>0 ex-

cept p = n.
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Proof. Let Q=ir~1(yo). Since Q is an iterated loop space, starting

with Sn, the homotopy groups of Q are known to be

ir0(Q) = 0,       n(Q) = irn+i(Sn) for i > 0.

Serre [7] has shown that all of these groups are finite. Hence if k

is a field of characteristic 0, then

in(Q) <g> k = 0 for all i.

Then HP(Q, k)=0 ior all p, so the Vietoris-Begle theorem implies

that HP(H, k) ^Hp(Sn, k), and this implies that HP(H, k)=0 ior all
positive p^n. Since the groups are all finitely generated, it follows

that the groups HP(H, Z) are finite except for p = n.

The fiber space (H, Sn, ir) has the interesting property that its

homotopy sequence and its Wang sequence are formally the same.

Actually, we will see that they are isomorphic modulo a field of char-

acteristic 0, for even n.

We start with the ladder for the pair (II, Q).

->  Wr+l(H,   Q)   -> Tr(Q)   ~*   ITr(H)   -»   1Cr(H,   Q) -»  •   •   •

4, v 4* *r

-> HT+i(H, Q) -> Hr(Q) -» Hr(H) -> Hr(ff, Q) -» • • •

We use the Wang isomorphism w: Hr+n(H, Q)-^Hr(Q) to obtain the

Wang sequence from the homology sequence and use the projection

isomorphism p:irr+i(H, Q)^nrr+i(Sn) followed by the Hurewicz iso-

morphism h: 7r„+r(.Sn)—>7rr((?) in the homotopy sequence. This gives

the ladder

•  •  • —*  Tr+l-n(Q)  —>  1Tr(Q)  -* irr(H)   —>  Tr-n(Q)   —» •  •  ■

4" V* V 4'

-► Fr+1_B(Q) -» ffr(Q) -> Hr(fl) -> Hr-n(Q) ->•••.

Theorem 3.3. If n is even, the mapping from the homotopy sequence

to the homology sequence above is an isomorphism modulo a field k of

characteristic 0.

Proof. Since n is even ir„-i has a free cyclic subgroup. If/: Sn-i~^Q

represents a generator of this subgroup then / induces isomorphisms

1Ti(S„-l)   ®   k -► 1Ti(Q)   <g>  k

because ir,-(0 is finite except for i — n — 1. Since Hi(Sn-i, k) is iso-

morphic with ir,(5„_i)®^, the same is true of (2 and the theorem

follows.
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Using the above theorem and the suspension theorems, we get the

following results.

For n odd:

1. Hn(H)-+Hn(Sn) is onto,

2. H„-i(Q) —Hn-i(H) and both are finite,

3. For n>3, IIi(Q)-^Hn(Q) is either trivial or injective.

For n even:

1. Hn(H)-*H„(S„) is trivial, so

Hn(H) ~ Hn(Q)    or   Hn(H) - Hn(Q)/Z2.

2. Iln-l(H) ~IIn-l(Q)/Z.
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