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REMARK ON AUTOMORPHISMS OF GROUPS

MAURICE AUSLANDER

Let G be a group with center C. Let a be an automorphism of G

and n an integer such that a" is an inner automorphism. Thus there

is a g in G such that an(x) =gxg~1 for all x in G. Applying a to both

sides of this equation we have that an(a(x)) =a(g)a(x)a(g)~1 ior all

x in G. Since every element in G can be written as a(x) for some x in

G, it follows that g and a(g) induce the same inner automorphism

of G. Thus g~la(g) = c where c is in C. Now if y is in C, then (gy)~1a(gy)

= g~1y~1gca(y) =cy~1a(y). Thus as x runs through all x in G which

induce the inner automorphism an, the elements of the form x_1a(x)

run through the entire coset cCa in C/Ca, where Ca is the subgroup

of C consisting of all elements of the form y~xa(y) (y in C). This ele-

ment of C/Ca depends on n and will be denoted by o(a, n).

Theorem, i/ all the fixed points of a are in the center of G, then

an = 1. Further an = l if and only if o(a, n) = (1).

Proof. Let g in G induce the inner automorphism an. Then by the

previous remarks we have that g_1a(g) =c where c is in C. Thus the

abelian subgroup of G generated by C and g is stable under a. Since

«"(#) =£> it follows that Ylj-o ai(s) is a fixed point of a and is thus

in C. On the other hand, since ct(g)=gc, we have that JJ"=o a'(?)

= gnd for some d in C. Therefore g" is in C which means that an = 1.

It is clear that if an = l, then o(a, w) = (l). Suppose o(a, n) = (l).

Then by our introductory remarks, we can choose a g in G such that

g induces the inner automorphism a" and g~~1oc(g) = l. Thus g is a

fixed point of a. Consequently g is in the center of G, which means

that an = l.
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It should be observed that if o(a, n) =cCa, then c has the property

that YIa-o a'(c) = 1. Thus o(a, n) is actually an element of the

cohomology group H3(Zn, C), where Z„ is the integers mod n and a

generator of Z„ operates on C as a does. It is easily seen that o(a, n)

is the "obstruction" in the sense of Eilenberg and MacLane of the

(3-kernel Zn-^A(G)/I(G) given by m+Z-*amI(G), where A(G) and

1(G) are the automorphism and inner automorphism groups of G

respectively [l]. Thus the above theorem gives another interpreta-

tion of the "obstruction" in this special case.
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