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1. Introduction. Let E denote a free i?-module of rank n over a

ring R, and let GLn(R) be the group of one-to-one i?-linear maps of

E into itself. When R is (i) a skew-field, (ii) the ring Z of rational

integers, (iii) the ring Z[i] of Gaussian integers, or (iv) a noncom-

mutative principal ideal domain (n = 3 in this case), it has been

proved that the group An of automorphisms of GLn(R) is generated

by automorphisms of the following types:

(a) u—ftut-1,        tEGLn(R), (inner),

(b) u-*x(u)u,
where x is a homorphism of GLn(R) into the group of units of the

center of R satisfying x(X-T) =X_1 if and only if X = l.

(c) u—^u", a an automorphism of R,

(d) m—>/_1wi, u = contragredient of u, where t: E—>E* is a correla-

tion mapping E onto its dual E*. (For references concerning these

results see [l].)

On the other hand, for the case where R = K[x] is the ring of poly-

nomials in an indeterminate x over a field K, it has been shown [l ]

that the above types of automorphisms do not generate all the auto-

morphisms of GL2{R). It is thus clear that one cannot expect these

types of automorphisms to generate A2 unless fairly restrictive con-

ditions are imposed on the ring R.

We shall assume henceforth:

(I) R is a commutative principal ideal domain, integrally closed in

its quotient field.

(II) R is Euclidean.

(III) The group of units of R contains more than two elements.

(IV) There exist units a\, XGA, in R such that each tER is ex-

pressible in the form

m

t=2li ttiOii, ni E Z
»=i

where Z is the ring of rational integers and A is a set of indices. (If

char R=p5*0, then the nt are chosen from GF(p).)

Integral domains satisfying these conditions certainly exist. For

example, let R be the ring of all algebraic integers in a cyclotomic

field over the rationals; if R is Euclidean it will satisfy (I)-(IV). As
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another example, let R be the ring consisting of all expressions xkf(x)

where f(x) CK[x] is a polynomial in an indeterminate x over a field

K, and where k ranges over all rational integers.1 Conditions (I)—

(IV) are also valid for this ring.

We shall use the following notations:

K = quotient field of R; (R, +) = additive group of R;

U = multiplicative group of units of R. We shall identify GL2(R)

with the group of 2 X2 matrices over R with determinant in U. Here-

after let

'-G >)■ j-(~l y »-(_, o> r^C !)■

Let 'X denote the transpose of X and let [a, fi] denote a diagonal

matrix with diagonal entries a, fi.

We shall find it convenient to introduce the subgroup V oi (R, +)

generated by all differences of units:

V =   Z  Z(a - fi),
a,0£U

where (as above) Z is replaced by GF(p) if char R = p9^0. Since R

has a unity element we see that 1 — ( — l)=2CV. Assume that (IV)

holds and let tCR be arbitrary, so that there are units {a(} and

integers {m,} such that

m

t  =   X) niai-
i-l

Since a, — 1C V for each i, we find that

m

t = X^ ni (mod V).
i=i

If 1C V, then since 2 £ V we see that

■in

^2 ni = 0 or 1  (mod 2)
i=i

according as tCV or tC V- Let P(t) denote the residue of XXi n>

(mod 2). Then P(t) is a well-defined function of t whenever 1GF,

even though the expression for t as a sum of units may not be unique.

On the other hand, if 1£ V then there is an equation

1 This example was given by Professor N. T. Hamilton.
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m

(1) 1 = Z »<(«< - Pi),        ni E Z,        a{, Pi E U.
«=i

We may remark that 1E V if and only if some sum of an odd number

of units can be zero. Thus 1E VI°r the cases R=Z and R = Z[i] (ring

of Gaussian integers), while 1EV for the case where R = K~[x] is a

polynomial domain over a field K of characteristic 9^2.

Further we note that by virtue of (IV), the subgroup V is an ideal

of R. For,

(23 tiiai) ■ (23 wj(& - 7;)) = 23 njtij(eiiPj - aa,) E V,

where n{, mjEZ, a,-, Pj, y,- E U.

2. Transvections in GL2 (R). We begin by assuming that R satis-

fies (I) and (III). If char R = 0 an element uEGL2(R) will be called a

transvection if there are more than two elements in GL2(R) conjugate

to u and commuting with u. If char R = p y^O, an element uEGL2(R),

U9±I, is called a transvection if up = I.

Lemma 1. An element uEGL2(R) is a transvection if and only if u is

conjugate in GL2(R) to an element of the form aX(t), aE U, t¥-0. Fur-

thermore, if char R=p9£0, then a = l.

Proof. (1) Char R = 0. Consider u as an element of GL2(K). If u

has distinct characteristic roots, then in some extension field of K,

u is similar to [a, b], a^b. On the one hand, only diagonal matrices

commute with [a, b]; on the other, any matrix similar to [a, b] must

have the same characteristic roots. Hence, there are at most two ele-

ments in GL2(R) conjugate to u and commuting with it, contrary to

the definition of transvection. Therefore u has a repeated character-

istic root1.

Since R is a principal ideal domain, then (as is well known) u is

conjugate in GL2(R) to an element of the form rX(t), tER- Then r2

is a unit, whence so is r.

Conversely, let uEGL2(R) be conjugate in GL2(R) to aX(t), t^O,

aE U. Let Pi, p2, PiE U be distinct. Then the three matrices

1/8*. l]-aX(t) ■ [pT\ 1] = aX(pil), (i= 1,2,3)

commute with and are conjugate to aX(t), whence it is clear that U

is a transvection.

(2) Char R=p^0. If uy^I is a transvection it satisfies the equa-

tion X^ —1 = (X —l)p = 0. Hence the characteristic polynomial of u is

(X —l)2, so the characteristic roots are both 1. Therefore u is con-

jugate in GL2(R) to an element of the form X(t).

Conversely,  any element uEGL2(R)  conjugate  to X(t)  clearly



212 JOSEPH LANDIN AND IRVING REINER [April

satisfies W = I. This completes the proof of the lemma.

Fix an element t0CR, and let tCA2. It follows at once from

Lemma 1 that to within inner automorphism

(2) X(loy = e(to)X(o-(lo)).

Since for each tCR, X(t) is a transvection commuting with X(t0) it

follows (assuming (2)) that X(t)r is a transvection commuting with

X(o(to)). Consequently

(3) X(ty = e(t)X(a(t)), a(t) C R, «(fl C U,

for all tCR.

Lemma 2. The mapping /—>e(i) is a homomorphism of (R, +) into

U; the mapping t-^a(t) is an automorphism of (R, +).

Proof. It follows immediately from X(s)X(t) =X(s+t) that e and

a are both homomorphisms.

We now show that a is an automorphism. If a(t) =0 then X(t) is

in the center of GL2(R), whence t = 0. Further, since

{aX(t): aC U,tC R,t 9*0}

is the set of all transvections commuting with X(to) for fixed to9^0,

therefore {aX(a(t)): aC U, tCR, t?±0} must be the entire set of

transvections commuting with X(cr(to)). Hence a is "onto," and there-

fore is an automorphism.

Lemma 3. For all tCR, e(t) =+ 1.

Proof. For rCA2 set

'-CD-
where J=[-l, l]. Then a2+bc = d2+bc = 1, b(a+d) =c(a+d) =0.

From JX(t)=X( — t)J we deduce ca(t) +d=ad and c = ac, where

a = e(t)~2. Consequently c = 0 or =1. However, c = 0 implies a = l;

therefore e(t) = +1.

Lemma 4. Let tCA2. Changing t by an inner automorphism we may

assume (3) and ST = S.

Proof. Set Y=ST; then F3 = J implies (F')3 = J for any tCA2.

Therefore, the minimum and characteristic polynomials of YT are

equal and divide X3—1.

If char R — 3 then A3—1 =(A —l)3 whence the characteristic poly-

nomial of YT is A2-2A + 1 =A2+A + 1, and therefore

(4) Trace YT = - 1.
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On the other hand, if chari?^3 and A2+A + l is irreducible over R

equation (4) again holds. However, suppose A2+A + l is reducible

over R; then the characteristic polynomial of   Y is either

(X - 1)(X - co), (X - 1)(X - co2)  or (X - co)(A - co2) = X2 + X + 1.

Now we have TT = ±X(o(l)), whence det TT = l. From S2= —I we

deduce det ST = 1. Therefore det  FT=1, whence the characteristic

polynomial of YT can only be A2+A + l. Consequently (4) holds in

all cases.

Set

-c :>
Then a2+bc = d2+bc= — 1, b(a+d) =c(a+d) =0. Suppose first b = c

= 0; then a2 = d2=— 1 implies a=±i = d. Now a=d= ±i is impos-

sible since this would imply that ST is in the center of GL2(R). On

the other hand, a= —d= +i contradicts (4). Consequently d= —a.

For tCR we have

/l     t\/a      b\/l     A"1       /a + ct    b - 2at - ct2\

\0    l)\c   -a)\0    l)      ~\    c -(a + ct)   )'

Since

Yr=±(a       "(0   +   *\

\c     ctr(i) — a)

and trace Fr= —1, we have co-(l) = +1, whence cCU. Hence there

exists toCR such that a+cto = 0. Changing t by an inner automor-

phism with factor X(tQ), we now have

V-&-1   0/

Finally, applying the inner automorphism with factor [l, b] we ob-

tain Lemma 4.

Lemma 5. If t is any automorphism of GL2(R) leaving S invariant

and satisfying (3) then

'X(ty = e(t)X(a(t)).

This follows from 'X(-t) =S~1X(t)S.

If r is an automorphism of GL2(R) satisfying the hypotheses of

Lemma 5 then (TrS)i=I implies e(l)o-(l) = 1. If a (I) = -1, by intro-

ducing a further inner automorphism with factor /, we may obtain
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a new r with o(l) = 1, but now ST= +S. Then also e(l) = ±1.

The foregoing results may be summarized as

Theorem 1. If tEA2, then after changing r by an inner automor-

phism if necessary, we have

X(ty = e(t)X(o-(t)), I E R,

(5) >x(ty = *(tyx(o-(t)),

S* = ±S,e(l) = ±1,<t(1) = 1,

where t induces the autmorphism ar: (R, + )—>(R, +) and the homo-

morphism e: (R, +)—>£/, and where the plus signs go together as do the

minus signs.

Lemma 6. If tEA2 satisfies (5) then

[a,lY = \(a)[p(a),l]

where both X and p are endomorphisms of U.

Proof. Set

G = \aX(t): aEU,lER},        H = {a'X(t):a EU,lE R},

and let K denote the intersection of the normalizers of G and H.

Then K consists of all diagonal matrices. Since GT = G and HT = H

imply KT = K, we see that [a, P]T is also diagonal. In particular

[a,iy=\(a)[p(a),l].

Lemma 7. For all aEU, tER we have

e(at) = e(t), p(a) = a(a), a (at) = cr(a)cr(l).

Proof. The decomposition  X(at) = [a,   l]-X(t)- [a,   l]_1  yields

e(at) =e(t), a(at) =p(a)o(t), which implies the result.

Assuming next that R satisfies condition (IV) we prove

Lemma 8. Let tEA2 satisfy condition (5). Then the automorphism

a of (R, +) induced by r is a ring automorphism of R.

Proof. If aEZ (Chari? = 0) or if aEGF(p) (Char R = p^0),
then o(a)=a. Hence, using (IV) it follows immediately that a(xy)

= a(x)a(y) for all x, yER-

We henceforth assume that R satisfies condition (I)—(IV) of the

introduction. We have seen that starting with an automorphism

tEA2, after changing r by an inner automorphism we obtain a new

automorphism (again denoted by r) satisfying

X(ty = t(t)X(a(t)),        S' = t(l)S, [a, 1]* = \(a)[o-(a), l],
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where e: (R, +)—*U is a homomorphism satisfying t(at)=e(t),

aCU, where cr: R—^R is a ring automorphism, and where A is an

endomorphism of U. Now replace r by a new automorphism

U-+(Ur)0-1

where cr_I is the automorphism of GL2(R) induced by the ring auto-

morphism o-"1 of R. Again calling this new automorphism t, we now

have an automorphism satisfying

X(ty = e(t)X(t),       S* = e(l)S,        [a, l]* - X(a)[«, l],

with possibly new maps e and A.

We find readily from the above that [l, a]T = A(a)[l, a], whence

[a, a]T = \2(a)[a, a].

From this equation we see that as a ranges over all elements of U

so does aA2(a). Thus a—->c*A2(a) must be an automorphism of U, and

from this it follows easily that

u —* A(det u) -u

is an automorphism p. of GL2(R). Replacing r by rpr1, the new auto-

morphism t now satisfies

X(ty = e(t)X(t),        S' = e(l)S, k 1]- = [a, l].

Now let *=ZT-i»<a<. onCU, ntCZ (chari? = 0) or n(CGF(p)
(char R=p^0). Then

m mm

<t) = n «(»*«.•) = n <«*) = n wi))ni = <i)sni-
i ii

Set 7 = e(l) = + 1. Then the automorphism t satisfies

(6) X(ty = y*»<X(t),        S* = yS,        [a, l]* - [«, l].

We now show that if we define V (as before) to be the subgroup of

(R, +) generated by {a—fi; a, fiCU}, then if lgFwe must have

7 = 1, while ii ICV then equations (6) with 7= —1 define an auto-

morphism 77 of GL2(R).

Indeed, if ICV, then 1 = ^»,- (a< —/S,-), a(, fiiCU, so

7 = «(1) = II e(w<«; _ M>&) = Tl*(niai)(e(nifii))-1

= IL«ni)(e(ni))-i= 1.

On the other hand, if l£ F, define P(/) as in the introduction. Let

t?: GL2(R)-+GL2(R) be defined by
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X(t)^(-l)^X(t),

(7) „:■        S-+-S,

[a,l]->[a, 1].

We shall prove that r) induces an automorphism of GL2(R), and for

this it suffices to show that r] is well-defined. Thus, we need only

prove that if a power product

U{X(ti),S, [ay, 1]}   =/

in GL2(R), then n,+ 23 P(ti)=0 (mod 2), where n3 is the number of

factors equal to S±1.

For tER we have t= 2^1niai whence

*(0 = II X«'(a,) = II X"'(l) = 2np<0 (mod V),

where T = X(1). Also, [a, l]=I (mod V) for aEU. Hence, if

IJ{X(U),S, [a,, 1]} =/

then since the subgroup V of (R  +) is also an ideal in R we have

II {P^'*', S,/} =■ I (mod 7).

However since 2EV, the only power products of 5 and P which are

distinct mod V are /, 5, T, ST, TS and STS. Of these, only the first

can be =/ (mod V) because 1£F. But if a power product of 5 and

T is =1 (mod 2) then the total number of factors of 5 and T must

be even. Hence ns+ 23-^* (^«) —0 (mod 2). This completes the proof

that r]EA2 whenever lgF.

To summarize our results  we have:

Theorem 2. The qroup A2 of automorphisms of GL2(R) is generated

by:
(1) The inner automorphisms u—tvuv*1, vEGL2(R),

(2) The automorphisms induced by automorphisms of R,

(3) The scalar multiplications >7^X(det u)u, where X is an endo-

morphism of U for which the map a—>ah2(a), aEU, is an automor-

phism of U,
(4) The automorphism i) described in (7), provided that 1EV.
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