AUTOMORPHISMS OF THE TWO-DIMENSIONAL GENERAIL
LINEAR GROUP OVER A EUCLIDEAN RING

JOSEPH LANDIN AND IRVING REINER

1. Introduction. Let E denote a free R-module of rank # over a
ring R, and let GL,(R) be the group of one-to-one R-linear maps of
E into itself. When R is (i) a skew-field, (ii) the ring Z of rational
integers, (iii) the ring Z[i] of Gaussian integers, or (iv) a noncom-
mutative principal ideal domain (#=3 in this case), it has been
proved that the group 4, of automorphisms of GL,(R) is generated
by automorphisms of the following types:

(a) u—tut™, tEGL,(R), (inner),

(b) u—x(w)u,
where x is a homorphism of GL,(R) into the group of units of the
center of R satisfying x(N) =N"1if and only if A=1.

(c) u—wu’, ¢ an automorphism of R,

(d) u—t—'ut, u=contragredient of u, where t: E—E* is a correla-
tion mapping E onto its dual E*. (For references concerning these
results see [1].)

On the other hand, for the case where R =K [x] is the ring of poly-
nomials in an indeterminate x over a field K, it has been shown [1]
that the above types of automorphisms do not generate all the auto-
morphisms of GLy(R). It is thus clear that one cannot expect these
types of automorphisms to generate A, unless fairly restrictive con-
ditions are imposed on the ring R.

We shall assume henceforth:

(I) R is a commutative principal ideal domain, integrally closed in
its quotient field.

(II) R is Euclidean.

(IIT) The group of units of R contains more than two elements.

(IV) There exist units ax, NEA, in R such that each tER is ex-
pressible in the form

m
i = Eniai, n & Z

t=1

where Z is the ring of rational integers and A is a set of indices. (If
char R=p >0, then the n; are chosen from GF(p).)

Integral domains satisfying these conditions certainly exist. For
example, let R be the ring of all algebraic integers in a cyclotomic
field over the rationals;if R is Euclidean it will satisfy (I)-(IV). As
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another example, let R be the ring consisting of all expressions x*f(x)
where f(x) €K [x] is a polynomial in an indeterminate x over a field
K, and where k ranges over all rational integers.! Conditions (I)-
(IV) are also valid for this ring.

We shall use the following notations:

K =quotient field of R; (R, +) =additive group of R;

U =multiplicative group of units of R. We shall identify GLy(R)
with the group of 2 X2 matrices over R with determinant in U. Here-
after let

10 ~1 0 0 1 11
=G o) os=(Ga) =6
0 1 0 1 ~1 0 0 1

1 ¢
X)) = , tE R
@ <0 1> <

Let *X denote the transpose of X and let [, 8] denote a diagonal
matrix with diagonal entries «, (3.

We shall find it convenient to introduce the subgroup V of (R, +)
generated by all differences of units:

V= Z Z(a - B))
a,peU

where (as above) Z is replaced by GF(p) if char R=p 0. Since R
has a unity element we see that 1 —(—1)=2& V. Assume that (IV)
holds and let {€R be arbitrary, so that there are units {a;} and
integers {n;} such that

m
= Z nit;.

i=1

Since a;—1&E V for each 7, we find that

t= Y. n; (modV).

1=1
If 1€V, then since 2€ V we see that

m

ZmEOorl (mod 2)

i=1

according as tEV or t€ V. Let P(f) denote the residue of >,

(mod 2). Then P(t) is a well-defined function of ¢ whenever 1€V,

even though the expression for ¢ as a sum of units may not be unique.
On the other hand, if 1& V then there is an equation

1 This example was given by Professor N. T. Hamilton.
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m

1) 1= nilei — B, n, € Z, a, B € U.
1=1

We may remark that 1E V if and only if some sum of an odd number
of units can be zero. Thus 1E V for the cases R=Z and R=Z|[i] (ring
of Gaussian integers), while 1€ V for the case where R=K[x] is a
polynomial domain over a field K of characteristic 2.

Further we note that by virtue of (IV), the subgroup V is an ideal
of R. For,

(22 ma) - (20 miB; — 7)) = 22 nimy(aiB; — aryj) €V,
where n;, m;&Z, o, 85, v; €U.

2. Transvections in GL, (R). We begin by assuming that R satis-
fies (I) and (III). If char R=0 an element # EGL,(R) will be called a
transvection if there are more thaun two elements in GLy(R) conjugate
to # and commuting with «. If char R=p#0, an element ¥ EGLy(R),
u#1, is called a transvection if u?=1.

LEMMA 1. An element uSGLy(R) is a transvection if and only if u is
conjugate in GLy(R) to an element of the form aX(t), aE U, t%0. Fur-
thermore, if char R=p#0, then a=1.

Proor. (1) Char R=0. Consider # as an element of GLy(K). If u
has distinct characteristic roots, then in some extension field of X,
u is similar to [a, b], a=b. On the one hand, only diagonal matrices
commute with [a, b]; on the other, any matrix similar to [a, 5] must
have the same characteristic roots. Hence, there are at most two ele-
ments in GLy(R) conjugate to # and commuting with it, contrary to
the definition of transvection. Therefore % has a repeated character-
istic root:

Since R is a principal ideal domain, then (as is well known) « is
conjugate in GLy(R) to an element of the form »X(¢), t&R. Then r?
is a unit, whence so is 7.

Conversely, let #€GL:(R) be conjugate in GL:(R) to aX (f), t0,
a& U. Let 34, Bs, B3E U be distinct. Then the three matrices

[:81': l]aX(t)[ z'—ly 1] = aX(Bit)) (7' = 1) 2: 3)

commute with and are conjugate to aX (¢), whence it is clear that U
is a transvection.

(2) Char R=p0. If u>1I is a transvection it satisfies the equa-
tion A»—1=(A—1)?»=0. Hence the characteristic polynomial of # is
(N—1)2, so the characteristic roots are both 1. Therefore « is con-
jugate in GLy(R) to an element of the form X (¢).

Conversely, any element u&GLy(R) conjugate to X(¢) clearly
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satisfies #? =I. This completes the proof of the lemma.
Fix an element { &R, and let 7&A4,. It follows at once from
Lemma 1 that to within inner automorphism

() X(to)" = €(to) X(a(t0)).

Since for each tER, X(¢) is a transvection commuting with X (¢,) it
follows (assuming (2)) that X (¢)7 is a transvection commuting with
X (a(ty)). Consequently

(3) X(t)r = G(I)X(O’(l)), U(t) € R, e(t) SHIP
for all tER.

LeMMA 2. The mapping t—e(t) is a homomorphism of (R, +) into
U; the mapping t—ao(t) is an automorphism of (R, +).

Proor. It follows immediately from X (s)X () =X (s+¢) that e and
o are both homomorphisms.

We now show that ¢ is an automorphism. If o(t) =0 then X (¢) is
in the center of GLy(R), whence ¢ =0. Further, since

{aX(): a € U, 1t € R, 1 # 0}

is the set of all transvections commuting with X (¢) for fixed #,50,
therefore {aX(a(t)):aE U, tER, t#O} must be the entire set of
transvections commuting with X (a(¢)). Hence ¢ is “onto,” and there-
fore is an automorphism.

LemMA 3. For all tER, €(t) =+1.
Proor. For TE A4, set
<a b
(")
¢ d

where J=[—1, 1]. Then a*+bc=d*+bc=1, b(a+d) =c(a+d)=0.
From JX(()=X(—t)J we deduce co(t)+d=ad and c=ac, where
a=¢(t)~% Consequently ¢=0 or =1. However, ¢=0 implies a=1;
therefore e(t) = + 1.

LEMMA 4. Let TEA,. Changing 1 by an inner automorphism we may
assume (3) and ST=S.

ProoF. Set Y=S8T; then Y3=1T implies (¥Y7)3=1T for any & 4,.
Therefore, the minimum and characteristic polynomials of Y7 are
equal and divide A3—1.

If char R=3 then \3—1=(A—1)3 whence the characteristic poly-
nomial of Y7 is A2—2X+1=A24\X-+1, and therefore

(4) Trace V7 = — 1.
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On the other hand, if char R>#3 and N2+\A+1 is irreducible over R
equation (4) again holds. However, suppose A?4A41 is reducible
over R; then the characteristic polynomial of Y is either

A—DA—w),A—1DA —o) or A —o)A —w?) =N+ N+ 1.

Now we have T7= + X(¢(1)), whence det 77=1. From S?= —1 we
deduce det S7=1. Therefore det Y7=1, whence the characteristic
polynomial of Y7 can only be A24-A+1. Consequently (4) holds in

all cases.
<a b
= (),
c d

Set
Then a?4bc=d*+bc=—1, b(a+d) =c(a+d)=0. Suppose first b=c
=0; then a*=d%*= —1 implies e=+7=d. Now a=d= +1 is impos-
sible since this would imply that S7 is in the center of GLy(R). On
the other hand, ¢ = —d = + ¢ contradicts (4). Consequently d = —a.
For t&ER we have

(1 t)(a b)(l t)_1_<a+cl b — 2at — ¢t
0 1/\¢ —a/\0 1 B c —(a+ce) J°

Since
1 b
Y,=i<a as(1) + )
¢ co(l) —a
and trace Y"= —1, we have co(1) = +1, whence ¢E U. Hence there

exists {,&R such that a+4cty=0. Changing 7 by an inner automor-
phism with factor X(¢,), we now have

(o)
ST = .
—b1 0

Finally, applying the inner automorphism with factor [1, 4] we ob-
tain Lemma 4.

LEMMA 5. If 7 is any automorphism of GLy(R) leaving S invariant
and satisfying (3) then

X()7 = () X(o(t)).

This follows from ‘X (—¢#) =S-1X(¢)S.

If 7 is an automorphism of GL,(R) satisfying the hypotheses of
Lemma 5 then (77S5)?=1T implies €¢(1)o(1) =1. If ¢(1) = —1, by intro-
ducing a further inner automorphism with factor J, we may obtain
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a new 7 with (1) =1, but now S*= +.S. Then also ¢(1) = + 1.
The foregoing results may be summarized as

THEOREM 1. If 1EA,, then after changing 7 by an inner automor-
phism if necessary, we have
X0 = ()X (a(1)), tE R,
(5) X)) = e() X (a(2)),
S7=18,¢1) = £1,0(1) =1,
where T induces the autmorphism o: (R, +)—(R, +) and the homo-

morphism e: (R, +)— U, and where the plus signs go together as do the
MINUS SIENS.

LEMMA 6. If TEA, satisfies (5) then
[, 1] = o) [p(e), 1]

where both N\ and p are endomorphisms of U.
PRrOOF. Set
G=1{aX():a€EU,tER}, H={a'X({l):aEU,!ER},

and let K denote the intersection of the normalizers of G and H.
Then K consists of all diagonal matrices. Since G'=G and H'=H
imply K=K, we see that [a, 8] is also diagonal. In particular
[o, 1]7=\() [p(e), 1].

LEMMA 7. For all c E U, t&ER we have
e(at) = (), pla) =o(@), o(at) = a(a)a(t).

Proor. The decomposition X(af)=[a, 1]-X(¢)- [a, 1]7! yields
e(at) = ¢€(t), o(at) =p(a)o(t), which implies the result.
Assuming next that R satisfies condition (IV) we prove

LEMMA 8. Let & A, satisfy condition (5). Then the automorphism
o of (R, +) induced by 7 is a ring automor phism of R.

Proor. If aEZ (Char R=0) or if aEGF(p) (Char R=p#0),
then ¢(a) =a. Hence, using (IV) it follows immediately that o(xy)
=0(x)o(y) for all x, yER.

We henceforth assume that R satisfies condition (I)-(IV) of the
introduction. We have seen that starting with an automorphism
7EA,, after changing 7 by an inner automorphism we obtain a new
automorphism (again denoted by ) satisfying

X@) = e®X(@(®), S =e1)S, [a 1] = Ne)[o(e), 1],



1958] THE TWO-DIMENSIONAL GENERAL LINEAR GROUP 215

where e: (R, +)—U is a homomorphism satisfying e(at)=e¢(?),
a& U, where 0: R—R is a ring automorphism, and where \ is an
endomorphism of U. Now replace 7 by a new automorphism

U— (U)o!

where ¢~! is the automorphism of GLy(R) induced by the ring auto-
morphism ¢~! of R. Again calling this new automorphism 7, we now
have an automorphism satisfying

X0 =e0X®), S =e1)S, [a 1] =NMa)|a, 1],

with possibly new maps € and A.
We find readily from the above that [1, a]"=\(a)[1, «], whence

[o, @] = A¥(e) e, al.

From this equation we see that as a ranges over all elements of U
so does aA?(a). Thus a—al*(a) must be an automorphism of U, and
from this it follows easily that

u— \(det u)-u

is an automorphism u of GL:(R). Replacing 7 by ru~!, the new auto-
morphism 7 now satisfies

X0 =e0X@®, S =e1S, [o1] = [e1].
Now let ¢= ZZ’LI nio;, a;EU, n;E€Z (char R=0) or n;EGF(p)
(char R=p>0). Then

m m m

() = II e(na) = IT e(n) = I (e(1))™ = (1),

1 1 1
Set ¥y =¢(1) = £ 1. Then the automorphism 7 satisfies
(6) X@=yX@1), S =498, |o1] =][a,1].

We now show that if we define V (as before) to be the subgroup of
(R, +) generated by {a-—B; a, BE U}, then if 1€V we must have
v =1, while if 1&V then equations (6) with 4y = —1 define an auto-
morphism 7 of GLy(R).

Indeed, if 1€V, then 1= Y n; (ai—pB:), ai, B:E U, so

v =e(1) = [ e(miai — n:8:) = le(mias)(e(niBs)) 1
II e (e(na))* = 1.

On the other hand, if 1€ V, define P(¢) as in the introduction. Let
n: GLy(R)—GLy(R) be defined by
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X(0) = (=DPOX(0),
(7 n: §S— =5,
[a, 1] = [, 1].
We shall prove that # induces an automorphism of GL:(R), and for

this it suffices to show that 5 is well-defined. Thus, we need only
prove that if a power product

IT{xw),s, le) 1]} =1

in GLy(R), then n,+ Z P(t;)=0 (mod 2), where #, is the number of
factors equal to S*!.
For tER we have t= ) _n.a; whence

X()) = IT X#i(a) = II Xi(1) = T7® (mod V),
where T=X(1). Also, [a, 1]=I (mod V) for « & U. Hence, if
X, S, e, 1]} =1
then since the subgroup V of (R +) is also an ideal in R we have
II {7Pw», s, 1} = I (mod V).

However since 2€ V, the only power products of .S and T which are
distinct mod Vare I, S, T, ST, T.S and ST'S. Of these, only the first
can be =J (mod V) because 1€ V. But if a power product of S and
T is =1 (mod 2) then the total number of factors of S and T" must
be even. Hence #,4+ D P(t;)=0 (mod 2). This completes the proof
that nE 4, whenever 1E V.

To summarize our results we have:

TuEOREM 2. The qroup A of automorphisms of GLe(R) is generated
by:

(1) The inner automorphisms u—wvuv=, v&EGLy(R),

(2) The automorphisms induced by automorphisms of R,

(3) The scalar multiplications U—N(det u)u, where N is an endo-
morphism of U for which the map a—aN*(a), aE U, is an automor-
phism of U,

(4) The automorphism n described in (7), provided that 1E V.
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