AUTOMORPHISMS OF THE TWO-DIMENSIONAL GENERAL LINEAR GROUP OVER A EUCLIDEAN RING

JOSEPH LANDIN AND IRVING REINER

- 1. Introduction. Let E denote a free R-module of rank n over a ring R, and let $GL_n(R)$ be the group of one-to-one R-linear maps of E into itself. When R is (i) a skew-field, (ii) the ring Z of rational integers, (iii) the ring Z[i] of Gaussian integers, or (iv) a noncommutative principal ideal domain $(n \ge 3)$ in this case), it has been proved that the group A_n of automorphisms of $GL_n(R)$ is generated by automorphisms of the following types:
 - (a) $u \rightarrow tut^{-1}$, $t \in GL_n(R)$, (inner),
 - (b) $u \rightarrow \chi(u)u$,

where χ is a homorphism of $GL_n(R)$ into the group of units of the center of R satisfying $\chi(\lambda I) = \lambda^{-1}$ if and only if $\lambda = 1$.

- (c) $u \rightarrow u^{\sigma}$, σ an automorphism of R,
- (d) $u \rightarrow t^{-1}ut$, u = contragredient of u, where $t: E \rightarrow E^*$ is a correlation mapping E onto its dual E^* . (For references concerning these results see [1].)

On the other hand, for the case where R = K[x] is the ring of polynomials in an indeterminate x over a field K, it has been shown [1] that the above types of automorphisms do not generate all the automorphisms of $GL_2(R)$. It is thus clear that one cannot expect these types of automorphisms to generate A_2 unless fairly restrictive conditions are imposed on the ring R.

We shall assume henceforth:

- (I) R is a commutative principal ideal domain, integrally closed in its quotient field.
 - (II) R is Euclidean.
 - (III) The group of units of R contains more than two elements.
- (IV) There exist units α_{λ} , $\lambda \in \Lambda$, in R such that each $t \in R$ is expressible in the form

$$t = \sum_{i=1}^{m} n_i \alpha_i, \qquad n_i \in Z$$

where Z is the ring of rational integers and Λ is a set of indices. (If char $R = p \neq 0$, then the n_i are chosen from GF(p).)

Integral domains satisfying these conditions certainly exist. For example, let R be the ring of all algebraic integers in a cyclotomic field over the rationals; if R is Euclidean it will satisfy (I)–(IV). As

Presented to the Society, June 15, 1957; received by the editors May 31, 1957.

another example, let R be the ring consisting of all expressions $x^k f(x)$ where $f(x) \in K[x]$ is a polynomial in an indeterminate x over a field K, and where k ranges over all rational integers. Conditions (I)–(IV) are also valid for this ring.

We shall use the following notations:

K =quotient field of R; (R, +) = additive group of R;

U = multiplicative group of units of R. We shall identify $GL_2(R)$ with the group of 2×2 matrices over R with determinant in U. Hereafter let

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad J = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$
$$X(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \qquad t \in R.$$

Let ${}^{t}X$ denote the transpose of X and let $[\alpha, \beta]$ denote a diagonal matrix with diagonal entries α, β .

We shall find it convenient to introduce the subgroup V of (R, +) generated by all differences of units:

$$V = \sum_{\alpha,\beta \in U} Z(\alpha - \beta),$$

where (as above) Z is replaced by GF(p) if char $R = p \neq 0$. Since R has a unity element we see that $1 - (-1) = 2 \in V$. Assume that (IV) holds and let $t \in R$ be arbitrary, so that there are units $\{\alpha_i\}$ and integers $\{n_i\}$ such that

$$t = \sum_{i=1}^m n_i \alpha_i.$$

Since $\alpha_i - 1 \in V$ for each i, we find that

$$t \equiv \sum_{i=1}^{m} n_i \pmod{V}.$$

If $1 \equiv V$, then since $2 \in V$ we see that

$$\sum_{i=1}^{m} n_i \equiv 0 \text{ or } 1 \pmod{2}$$

according as $t \in V$ or $t \in V$. Let P(t) denote the residue of $\sum_{t=1}^{m} n_t \pmod{2}$. Then P(t) is a well-defined function of t whenever $1 \in V$, even though the expression for t as a sum of units may not be unique.

On the other hand, if $1 \in V$ then there is an equation

¹ This example was given by Professor N. T. Hamilton.

(1)
$$1 = \sum_{i=1}^{m} n_i(\alpha_i - \beta_i), \quad n_i \in \mathbb{Z}, \quad \alpha_i, \beta_i \in \mathbb{U}.$$

We may remark that $1 \in V$ if and only if some sum of an odd number of units can be zero. Thus $1 \in V$ for the cases R = Z and R = Z[i] (ring of Gaussian integers), while $1 \in V$ for the case where R = K[x] is a polynomial domain over a field K of characteristic $\neq 2$.

Further we note that by virtue of (IV), the subgroup V is an ideal of R. For,

$$(\sum n_i\alpha_i)\cdot(\sum m_j(\beta_j-\gamma_j))=\sum n_im_j(\alpha_i\beta_j-\alpha_i\gamma_j)\in V,$$
 where $n_i,\ m_j\in Z,\ \alpha_i,\ \beta_j,\ \gamma_j\in U.$

2. Transvections in $GL_2(R)$. We begin by assuming that R satisfies (I) and (III). If char R=0 an element $u \in GL_2(R)$ will be called a transvection if there are more than two elements in $GL_2(R)$ conjugate to u and commuting with u. If char $R=p\neq 0$, an element $u\in GL_2(R)$, $u\neq I$, is called a transvection if $u^p=I$.

LEMMA 1. An element $u \in GL_2(R)$ is a transvection if and only if u is conjugate in $GL_2(R)$ to an element of the form $\alpha X(t)$, $\alpha \in U$, $t \neq 0$. Furthermore, if char $R = p \neq 0$, then $\alpha = 1$.

PROOF. (1) Char R=0. Consider u as an element of $GL_2(K)$. If u has distinct characteristic roots, then in some extension field of K, u is similar to [a, b], $a \neq b$. On the one hand, only diagonal matrices commute with [a, b]; on the other, any matrix similar to [a, b] must have the same characteristic roots. Hence, there are at most two elements in $GL_2(R)$ conjugate to u and commuting with it, contrary to the definition of transvection. Therefore u has a repeated characteristic root.

Since R is a principal ideal domain, then (as is well known) u is conjugate in $GL_2(R)$ to an element of the form rX(t), $t \in R$. Then r^2 is a unit, whence so is r.

Conversely, let $u \in GL_2(R)$ be conjugate in $GL_2(R)$ to $\alpha X(t)$, $t \neq 0$, $\alpha \in U$. Let β_1 , β_2 , $\beta_3 \in U$ be distinct. Then the three matrices

$$[\beta_i, 1] \cdot \alpha X(t) \cdot [\beta_i^{-1}, 1] = \alpha X(\beta_i t), \qquad (i = 1, 2, 3)$$

commute with and are conjugate to $\alpha X(t)$, whence it is clear that U is a transvection.

(2) Char $R = p \neq 0$. If $u \neq I$ is a transvection it satisfies the equation $\lambda^p - 1 = (\lambda - 1)^p = 0$. Hence the characteristic polynomial of u is $(\lambda - 1)^2$, so the characteristic roots are both 1. Therefore u is conjugate in $GL_2(R)$ to an element of the form X(t).

Conversely, any element $u \in GL_2(R)$ conjugate to X(t) clearly

satisfies $u^p = I$. This completes the proof of the lemma.

Fix an element $t_0 \in \mathbb{R}$, and let $\tau \in A_2$. It follows at once from Lemma 1 that to within inner automorphism

$$(2) X(t_0)^{\tau} = \epsilon(t_0)X(\sigma(t_0)).$$

Since for each $t \in R$, X(t) is a transvection commuting with $X(t_0)$ it follows (assuming (2)) that $X(t)^{\tau}$ is a transvection commuting with $X(\sigma(t_0))$. Consequently

(3)
$$X(t)^{\tau} = \epsilon(t)X(\sigma(t)), \quad \sigma(t) \in \mathbb{R}, \quad \epsilon(t) \in U,$$
 for all $t \in \mathbb{R}$.

LEMMA 2. The mapping $t \rightarrow \epsilon(t)$ is a homomorphism of (R, +) into U; the mapping $t \rightarrow \sigma(t)$ is an automorphism of (R, +).

PROOF. It follows immediately from X(s)X(t) = X(s+t) that ϵ and σ are both homomorphisms.

We now show that σ is an automorphism. If $\sigma(t) = 0$ then X(t) is in the center of $GL_2(R)$, whence t = 0. Further, since

$$\{\alpha X(t) : \alpha \in U, t \in R, t \neq 0\}$$

is the set of all transvections commuting with $X(t_0)$ for fixed $t_0 \neq 0$, therefore $\{\alpha X(\sigma(t)): \alpha \in U, t \in R, t \neq 0\}$ must be the entire set of transvections commuting with $X(\sigma(t_0))$. Hence σ is "onto," and therefore is an automorphism.

LEMMA 3. For all $t \in \mathbb{R}$, $\epsilon(t) = \pm 1$.

PROOF. For $\tau \in A_2$ set

$$J^{\tau} = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

where J = [-1, 1]. Then $a^2 + bc = d^2 + bc = 1$, b(a+d) = c(a+d) = 0. From JX(t) = X(-t)J we deduce $c\sigma(t) + d = \alpha d$ and $c = \alpha c$, where $\alpha = \epsilon(t)^{-2}$. Consequently c = 0 or = 1. However, c = 0 implies $\alpha = 1$; therefore $\epsilon(t) = \pm 1$.

LEMMA 4. Let $\tau \in A_2$. Changing τ by an inner automorphism we may assume (3) and $S^{\tau} = S$.

PROOF. Set Y = ST; then $Y^3 = I$ implies $(Y^7)^3 = I$ for any $\tau \in A_2$. Therefore, the minimum and characteristic polynomials of Y^7 are equal and divide $\lambda^3 - 1$.

If char R=3 then $\lambda^3-1=(\lambda-1)^3$ whence the characteristic polynomial of Y^{τ} is $\lambda^2-2\lambda+1=\lambda^2+\lambda+1$, and therefore

(4) Trace
$$Y^{\tau} = -1$$
.

On the other hand, if char $R \neq 3$ and $\lambda^2 + \lambda + 1$ is irreducible over R equation (4) again holds. However, suppose $\lambda^2 + \lambda + 1$ is reducible over R; then the characteristic polynomial of Y is either

$$(\lambda - 1)(\lambda - \omega)$$
, $(\lambda - 1)(\lambda - \omega^2)$ or $(\lambda - \omega)(\lambda - \omega^2) = \lambda^2 + \lambda + 1$.

Now we have $T^{\tau} = \pm X(\sigma(1))$, whence det $T^{\tau} = 1$. From $S^2 = -1$ we deduce det $S^{\tau} = 1$. Therefore det $Y^{\tau} = 1$, whence the characteristic polynomial of Y^{τ} can only be $\lambda^2 + \lambda + 1$. Consequently (4) holds in all cases.

Set

$$S^{\tau} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Then $a^2+bc=d^2+bc=-1$, b(a+d)=c(a+d)=0. Suppose first b=c=0; then $a^2=d^2=-1$ implies $a=\pm i=d$. Now $a=d=\pm i$ is impossible since this would imply that S^7 is in the center of $GL_2(R)$. On the other hand, $a=-d=\pm i$ contradicts (4). Consequently d=-a.

For $t \in R$ we have

$$\binom{1}{0} \quad t \choose 0 \quad 1 \binom{a}{c} \quad b \choose 0 \quad 1 \end{pmatrix}^{-1} = \binom{a+ct}{c} \quad b-2at-ct^2 \\ c \qquad -(a+ct) \end{pmatrix}.$$

Since

$$Y^{\tau} = \pm \begin{pmatrix} a & a\sigma(1) + b \\ c & c\sigma(1) - a \end{pmatrix}$$

and trace $Y^{\tau} = -1$, we have $c\sigma(1) = \pm 1$, whence $c \in U$. Hence there exists $t_0 \in R$ such that $a + ct_0 = 0$. Changing τ by an inner automorphism with factor $X(t_0)$, we now have

$$S^{\tau} = \begin{pmatrix} 0 & b \\ -b^{-1} & 0 \end{pmatrix}.$$

Finally, applying the inner automorphism with factor [1, b] we obtain Lemma 4.

LEMMA 5. If τ is any automorphism of $GL_2(R)$ leaving S invariant and satisfying (3) then

$${}^{t}X(t)^{\tau} = \epsilon(t) {}^{t}X(\sigma(t)).$$

This follows from ${}^{t}X(-t) = S^{-1}X(t)S$.

If τ is an automorphism of $GL_2(R)$ satisfying the hypotheses of Lemma 5 then $(T^{\tau}S)^3 = I$ implies $\epsilon(1)\sigma(1) = 1$. If $\sigma(1) = -1$, by introducing a further inner automorphism with factor J, we may obtain

a new τ with $\sigma(1) = 1$, but now $S^{\tau} = \pm S$. Then also $\epsilon(1) = \pm 1$. The foregoing results may be summarized as

THEOREM 1. If $\tau \in A_2$, then after changing τ by an inner automorphism if necessary, we have

(5)
$$X(t)^{\tau} = \epsilon(t)X(\sigma(t)), \qquad t \in \mathbb{R},$$
$${}^{t}X(t)^{\tau} = \epsilon(t){}^{t}X(\sigma(t)), \qquad S^{\tau} = \pm S, \ \epsilon(1) = \pm 1, \ \sigma(1) = 1,$$

where τ induces the autmorphism $\sigma: (R, +) \rightarrow (R, +)$ and the homomorphism $\epsilon: (R, +) \rightarrow U$, and where the plus signs go together as do the minus signs.

LEMMA 6. If $\tau \in A_2$ satisfies (5) then

$$[\alpha, 1]^{\tau} = \lambda(\alpha)[\rho(\alpha), 1]$$

where both λ and ρ are endomorphisms of U.

Proof. Set

$$G = \{ \alpha X(t) : \alpha \in U, t \in R \}, \quad H = \{ \alpha^t X(t) : \alpha \in U, t \in R \},$$

and let K denote the intersection of the normalizers of G and H. Then K consists of all diagonal matrices. Since $G^r = G$ and $H^r = H$ imply $K^r = K$, we see that $[\alpha, \beta]^r$ is also diagonal. In particular $[\alpha, 1]^r = \lambda(\alpha) [\rho(\alpha), 1]$.

LEMMA 7. For all $\alpha \in U$, $t \in R$ we have

$$\epsilon(\alpha t) = \epsilon(t), \qquad \rho(\alpha) = \sigma(\alpha), \qquad \sigma(\alpha t) = \sigma(\alpha)\sigma(t).$$

PROOF. The decomposition $X(\alpha t) = [\alpha, 1] \cdot X(t) \cdot [\alpha, 1]^{-1}$ yields $\epsilon(\alpha t) = \epsilon(t)$, $\sigma(\alpha t) = \rho(\alpha)\sigma(t)$, which implies the result.

Assuming next that R satisfies condition (IV) we prove

Lemma 8. Let $\tau \in A_2$ satisfy condition (5). Then the automorphism σ of (R, +) induced by τ is a ring automorphism of R.

PROOF. If $a \in Z$ (Char R = 0) or if $a \in GF(p)$ (Char $R = p \neq 0$), then $\sigma(a) = a$. Hence, using (IV) it follows immediately that $\sigma(xy) = \sigma(x)\sigma(y)$ for all $x, y \in R$.

We henceforth assume that R satisfies condition (I)-(IV) of the introduction. We have seen that starting with an automorphism $\tau \in A_2$, after changing τ by an inner automorphism we obtain a new automorphism (again denoted by τ) satisfying

$$X(t)^{\tau} = \epsilon(t)X(\sigma(t)), \qquad S^{\tau} = \epsilon(1)S, \qquad [\alpha, 1]^{\tau} = \lambda(\alpha)[\sigma(\alpha), 1],$$

where $\epsilon: (R, +) \to U$ is a homomorphism satisfying $\epsilon(\alpha t) = \epsilon(t)$, $\alpha \in U$, where $\sigma: R \to R$ is a ring automorphism, and where λ is an endomorphism of U. Now replace τ by a new automorphism

$$U \rightarrow (U^{\tau})\sigma^{-1}$$

where σ^{-1} is the automorphism of $GL_2(R)$ induced by the ring automorphism σ^{-1} of R. Again calling this new automorphism τ , we now have an automorphism satisfying

$$X(t)^{\tau} = \epsilon(t)X(t), \qquad S^{\tau} = \epsilon(1)S, \qquad [\alpha, 1]^{\tau} = \lambda(\alpha)[\alpha, 1],$$

with possibly new maps ϵ and λ .

We find readily from the above that $[1, \alpha]^r = \lambda(\alpha)[1, \alpha]$, whence

$$[\alpha, \alpha]^{\tau} = \lambda^{2}(\alpha)[\alpha, \alpha].$$

From this equation we see that as α ranges over all elements of U so does $\alpha\lambda^2(\alpha)$. Thus $\alpha{\rightarrow}\alpha\lambda^2(\alpha)$ must be an automorphism of U, and from this it follows easily that

$$u \to \lambda(\det u) \cdot u$$

is an automorphism μ of $GL_2(R)$. Replacing τ by $\tau\mu^{-1}$, the new automorphism τ now satisfies

$$X(t)^{\tau} = \epsilon(t)X(t), \qquad S^{\tau} = \epsilon(1)S, \qquad [\alpha, 1]^{\tau} = [\alpha, 1].$$

Now let $t = \sum_{i=1}^{m} n_i \alpha_i$, $\alpha_i \in U$, $n_i \in Z$ (char R = 0) or $n_i \in GF(p)$ (char $R = p \neq 0$). Then

$$\epsilon(t) = \prod_{1}^{m} \epsilon(n_{i}\alpha_{i}) = \prod_{1}^{m} \epsilon(n_{i}) = \prod_{1}^{m} (\epsilon(1))^{n_{i}} = \epsilon(1)^{\sum n_{i}}.$$

Set $\gamma = \epsilon(1) = \pm 1$. Then the automorphism τ satisfies

(6)
$$X(t)^{\tau} = \gamma^{\sum n_i} X(t), \qquad S^{\tau} = \gamma S, \qquad [\alpha, 1]^{\tau} = [\alpha, 1].$$

We now show that if we define V (as before) to be the subgroup of (R, +) generated by $\{\alpha - \beta; \alpha, \beta \in U\}$, then if $1 \in V$ we must have $\gamma = 1$, while if $1 \in V$ then equations (6) with $\gamma = -1$ define an automorphism η of $GL_2(R)$.

Indeed, if $1 \in V$, then $1 = \sum n_i (\alpha_i - \beta_i)$, α_i , $\beta_i \in U$, so

$$\gamma = \epsilon(1) = \prod_{i} \epsilon(n_i \alpha_i - n_i \beta_i) = \prod_{i} \epsilon(n_i \alpha_i) (\epsilon(n_i \beta_i))^{-1}$$

= $\prod_{i} \epsilon(n_i) (\epsilon(n_i))^{-1} = 1.$

On the other hand, if $1 \in V$, define P(t) as in the introduction. Let $\eta: GL_2(R) \to GL_2(R)$ be defined by

(7)
$$\eta: \begin{cases} X(t) \to (-1)^{P(t)} X(t), \\ S \to -S, \\ [\alpha, 1] \to [\alpha, 1]. \end{cases}$$

We shall prove that η induces an automorphism of $GL_2(R)$, and for this it suffices to show that η is well-defined. Thus, we need only prove that if a power product

$$\prod\{X(t_i), S, [\alpha_j, 1]\} = I$$

in $GL_2(R)$, then $n_s + \sum P(t_i) \equiv 0 \pmod{2}$, where n_s is the number of factors equal to $S^{\pm 1}$.

For $t \in R$ we have $t = \sum n_i \alpha_i$ whence

$$X(t) = \prod X^{n_i}(\alpha_i) \equiv \prod X^{n_i}(1) \equiv T^{P(t)} \pmod{V},$$

where T = X(1). Also, $[\alpha, 1] \equiv I \pmod{V}$ for $\alpha \in U$. Hence, if

$$\prod\{X(t_i), S, [\alpha_i, 1]\} = I$$

then since the subgroup V of (R +) is also an ideal in R we have

$$\prod \{T^{P(t_i)}, S, I\} \equiv I \pmod{V}.$$

However since $2 \in V$, the only power products of S and T which are distinct mod V are I, S, T, ST, TS and STS. Of these, only the first can be $\equiv I \pmod{V}$ because $1 \in V$. But if a power product of S and T is $\equiv I \pmod{2}$ then the total number of factors of S and T must be even. Hence $n_s + \sum P(t_i) \equiv 0 \pmod{2}$. This completes the proof that $\eta \in A_2$ whenever $1 \in V$.

To summarize our results we have:

THEOREM 2. The group A_2 of automorphisms of $GL_2(R)$ is generated by:

- (1) The inner automorphisms $u \rightarrow vuv^{-1}$, $v \in GL_2(R)$,
- (2) The automorphisms induced by automorphisms of R,
- (3) The scalar multiplications $U \rightarrow \lambda(\det u)u$, where λ is an endomorphism of U for which the map $\alpha \rightarrow \alpha \lambda^2(\alpha)$, $\alpha \in U$, is an automorphism of U,
 - (4) The automorphism η described in (7), provided that $1 \in V$.

REFERENCES

- 1. I. Reiner, A new type of automorphism of the general linear group over a ring, Ann. of Math. vol. 66 (1957) pp. 461-466.
- 2. J. Landin and I. Reiner, Automorphisms of the Gaussian unimodular group, Trans. Amer. Math. Soc. vol. 87 (1958) pp. 76-89.

University of Illinois