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ON HARMONIC MAPPINGS1

JOHANNES C. C. NITSCHE

1. Suppose that the functions x = x(a, fi), y = y(a, fi) define a one-

to-one harmonic mapping of the unit disc T in the a, /3-plane (a+ifi

= y) onto a convex domain C in the x, y-plane (x+iy = s). The origin

is assumed to be fixed. Introducing two functions F(y) and G(y)

which, in T, depend analytically upon the variable y we may write

3 = Re F(y)+i Re G(y). The purpose of the present paper is (i) to

give a new proof of a lemma which, in a special form, was first used

by T. Rado [13] and which was proved in general by L. Bers (see

[2, Lemma 3.3]),2 (ii) to derive an improved value for an important

constant first introduced by E. Heinz [3]. The proofs will be very

simple due to the fact that there is a close connection between univa-

lent harmonic mappings and the minimal surface equation (see e.g.

[ll, footnote 2]) and also the differential equation

2

(1) <Pzz4>VV  ~  <t>xy  =   1.

The connection with the latter equation was exploited by K. Joergens

[8] for the study of the solutions of (1). One can, however, proceed

one step further by introducing a mapping which was invented by

H. Lewy [10] for Monge-Ampere equations.

2. Let s = Re/?(7)+iReG('r) be a harmonic mapping with the

properties mentioned above. Then the expression
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2 It has been shown by H. Hopf (cf. [7, p. 133 and 5, pp. 91-92]) that the com-

bination of Heinz's inequality with Schwarz's lemma yields a sharper result.
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(2) c> = — Im (fG + f y (FG' - F'G)dy\

may be regarded as a function 4>(x, y) of x and y, defined in C (see

K. Joergens [8, p. 339]). By a straightforward computation it can

be verified that c6(x, y) is a solution of the Equation (1). In fact, one

obtains

P-Im G(y),        q = Im F(y),

r =  | G' |2 ■ [Im F'G'Y1,       s = - [Re F'G'] ■ [im F'G'Y1,

t =  | F'\2-[lm F'G'Y1-

Here p, q, r, s, t are abbreviations for (px, c/>„, <pxx, <pxy, (pyv, as usual.

According to a lemma of H. Lewy [9], Im(P'G') = xay$ — x^ya?^0 in

T. It may be assumed that Im (F'G')>0. Then (j>xx>0. Now consider,

in C, the functions

(4)       u = u(x, y) = x + p(x, y),        v = v(x, y) = y + q(x, y)

and put u+iv = w. For any two points Zi and z2 in C the following

inequality holds true

(x2 - xi)[^>(x2, Ji) - P(xi, yi)] + (y2 - yi)[q(x2, y2) - q(xh yi)]

= f(x2 - xi)2 + 2s(x2 — xi)(y2 - yi) + ~t(y2 — yi)2 ^ 0.

Here r, s, 1 stand for the values of r, s, t in a point of the segment con-

necting Zi with z2. Substitute (4) into (5):

(6) (x2 — xi)2 + (y2 — yi)2 ^ (x2 — Xi)(u2 — ut) + (y2 — yi)(v2 — vi)

and hence

(7) | 22 — Zi I    g   I W2 — Wi I ,

equality holding only if Zi = z2 (see H. Lewy [10]). Therefore the

mapping (4) is one-to-one and it enlarges distances. Denote by fl the

image domain of C under this mapping. On the other hand, going

back to the definitions of x, y and p, q one finds

(8) w = F(y) + iG(y) = W(y).

That is to say the domain Q is also the schlicht conformal image of

r under the mapping function W(y).

3. It is easy to see that, starting out with a solution c/>(x, y) of (1),

the inverse mapping w—>z under all circumstances is harmonic. Fur-

thermore it turns out that the expression /=2z — w which can be

regarded as a function of u and v is an analytic function of w. The
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inequality \df/dw\ <1 which is satisfied by its derivative has inter-

esting consequences, see [12].

4. The lemma in question states that there cannot exist a schlicht

harmonic mapping of the unit disc T onto the whole z-plane. The

proof is obvious since, if C would be the whole z-plane then ft would

have to be the whole w-plane. But, at the same time, ft is the con-

formal image of T. This is not possible.

5. Suppose now that C, like T, is the unit disc \z\ <1. E. Heinz

[3] has established an inequality

(9) xa + xp + ya + yj]7=o ^ M-

Here his constant p. is independent of the individual harmonic map-

ping under consideration. Heinz found m = 2 — (8/tt) ^^-2 «~2 = 0.358.

Using the relations derived above one obtains the formula

2        2        2        2 r + t        dW 2

(10) xa + x? + ya + y» = —-— •   —   .
2 + r + t      dy

Remembering the properties of the mapping (4) we know that ft

contains at least a circle of radius 1. Hence, by Schwarz's lemma,

IdW(0)/dy\ ^ 1. In fact, the sign of equality cannot hold since

d(u, v)/d(x, y)=2+r+t^i. Furthermore l/2^(r+t)/(2+r+t) <l.

Combining these two inequalities we conclude

(11) n ^ 1/2.

6. We wish to mention that H. Hopf3 has given another simple

proof of the value 1/2 for the constant ju. A similar inequality to (9)

holds also for more general univalent mappings, see P. Berg [l],

E. Heinz [4; 5]. However, remaining with the harmonic mappings:

the best value of p. is not known.4 If one takes the polynomial solution

<p(x, y) =cx2/2+y2/2c then ft is an ellipse with the semiaxes l+c and

1+1/c. A computation yields

r + t .       dW(0)        4
lim- = 1, lim   -   = — >
c->«> 2 + r + t c->»       dy w

and hence

8 In a letter of October 26, 1956.

4 Added in proof: A refinement of the preceding method yields even m = 0.64, as

will be shown elsewhere. Therefore, referring to Richert's example for an upper

bound, one knows: 0.64 g=M = 27/2ir*.
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lim [xa + xp + ya + 31,3] 7=0 = 16/V2.
C—*00

By an example of H. E. Richert (cf. E. Hopf [6, p. 802]) it is, how-

ever, known that the value 16/V2 is too large
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