SOME REMARKS ON THE MULTIPLICATIVE GROUP OF A SFIELD

EUGENE SCHENKMAN ${ }^{1}$

Introduction. In this note when K is a sfield then K^{\prime} will denote the multiplicative group of K. We shall show that if H is any subfield of K or a noncommutative subsfield of the sfield K (with some few exceptions) and if H^{\prime} is subinvariant in K^{\prime} then H^{\prime} is invariant in K^{\prime} and hence H is either K itself or in the center of K. This result extends the Cartan-Brauer-Hua theorem (cf. [1]).

Notation. If M is a subset of K then $Z(M)$ will denote the centralizer of M; this is a sfield, its multiplicative group will be denoted by $Z^{\prime}(M)$. The normalizer of M in K^{\prime} will be denoted by $N(M)$; and the normalizer of $N(M)$ by $N^{2}(M)$. If J is an invariant subgroup of L we shall write $J \Delta L$. If J is subinvariant in L, that is, if J is a member of a composition series of L we shall write $J \triangle \Delta L$.

Conclusions. The first lemma is essentially the argument of [1].
Lemma 1. If M is a subsfield of the sfield K and if x is in $N(M)$ but not in M nor in $Z(M)$ then for all m in $Z(M) \cap M^{\prime}, m+x$ is not in $N(M)$.

Proof. Since x is not in $Z(M)$ there exists an n in M such that $n x=x n^{\prime}$ where n^{\prime} is in M and $n^{\prime} \neq n$. Then $(m+x)^{-1} n(m+x)$ $=(m+x)^{-1}\left[n m+x n^{\prime}+m n^{\prime}-m n^{\prime}\right]=(m+x)^{-1}\left(n m-m n^{\prime}\right)+n^{\prime}$. If the left member were in M then so would be the right member and consequently $(m+x)^{-1}\left(n m-m n^{\prime}\right)$; then $(m+x)^{-1}$ and hence x are in M contrary to hypothesis.

Corollary 1 (Cartan-Brauer-Hua Theorem). The only invariant subsfields of K are K itself and subfields of the center of K.

Proof. Suppose M is an invariant subsfield of K not equal to K nor contained in the center of K. Then there is a nonzero x not in M^{\prime} and a nonzero y not in $Z(M)$; and one of the three elements x, y, and $x y$ is in neither M^{\prime} nor in $Z^{\prime}(M)$. For if two of these elements were in one of these sfields it would follow that the third is also there. It follows from the lemma that there is a nonzero element outside $N(M)$ contrary to hypothesis.

Received by the editors August 19, 1957.
${ }^{1}$ The author is indebted to the National Science Foundation for support.

Lemma 2. If $I I$ and M are subsfields of K, H not contained in M, and if I^{\prime} is contained in $N(M)$, then H is contained in $Z(M)$.

Proof. If H were not in $Z(M)$, then there would be an x in H, x not in $Z(M)$. Since H is not in M there is a y in H^{\prime}, y not in M. Now the three elements x, y, and $x y$ are all in H^{\prime} and hence in $N(M)$. One of them is in neither M nor in $Z(M)$ for if any two are in one of these sfields then the third is there also. This is a contradiction of Lemma 1 since the elements $x+1, y+1$, and $x y+1$ are also in H^{\prime} and hence in $N(M)$. We conclude that H is contained in $Z(M)$ as the lemma asserts.

Corollary 2. If M is a sfield which is the centralizer of its center H then $N(M)=N^{2}(M)=N(H)=N^{2}(H)$.

Proof. H is invariant in $N(M)$ and hence $N(M)$ is contained in $N(H)$. On the other hand M is contained in $N(H)$ and is normal in $N(H)$ since M is the centralizer of H. Hence $N(H)$ is contained in $N(M)$ and therefore $N(H)=N(M)$.

Now suppose there is a y in $N^{2}(M), y$ not in $N(M)$. Then y transforms H into a conjugate field G not contained in H, but contained in $N(M)$ and invariant in $N(M)$. By Lemma $2, G$ is contained in $Z(H)$ $=M$ and, since M is in $N(M), G$ is invariant in M. But then by the Cartan-Brauer-Hua theorem since G is not contained in H, G must be equal to M. It follows that M is Abelian and hence equal to H equal to G contrary to the fact that y was chosen out of $N(M)$. We conclude that $N(M)=N^{2}(M)$.

Remark. If M is a maximal subfield of the sfield K then $N(M)$ $=N^{2}(M)$. For by the maximality M is the centralizer of its center.

Theorem 1. If F is a proper subfield of the sfield K and if F^{\prime} is subinvariant in K^{\prime} then F is in the center of K.

Proof. Suppose F is not in the center of K and suppose that $F^{\prime} \triangle G_{1} \triangle G_{2} \triangle \cdots \Delta G_{n}=K^{\prime}$. We shall show that the sfield \bar{F} generated by all the conjugates of F^{\prime} in K^{\prime} is Abelian. This will give a contradiction to the Cartan-Brauer-Hua theorem since then \bar{F}^{\prime} is invariant in K^{\prime} but not equal to K^{\prime} nor in the center of K^{\prime}.
\bar{F} is not in the center of K since F is not, and \bar{F} contains $F . \bar{F}$ is not equal to K since that would imply K is Abelian and F would be in the center of $K . \bar{F}$ is invariant in K since it is the sfield generated by an invariant subset of K^{\prime}. Thus the theorem is proved when we show that \bar{F} is Abelian. This will be done by induction on the length n of the composition series containing F^{\prime}.

Suppose then that for j in some set J, F_{j}^{\prime} are all the conjugates of
F^{\prime} by elements of G_{2}. Then each F_{j}^{\prime} is normal in G_{1} and hence by Lemma 2 each F_{j}^{\prime} is in the centralizer of all the others. It follows that the sfield F_{1} generated by the F_{j} is a field. Suppose now that we have shown that the sfield F_{m} generated by all the conjugates of F^{\prime} in G_{m} is a field. It is easy to check that F_{m}^{\prime} is normal in the group generated by F_{m}^{\prime} and G_{m+1}. If $F^{* \prime}$ is a conjugate of F^{\prime} in G_{m+1} then again by Lemma $2 F^{*}$ is in the centralizer of F_{m} and hence in particular F and F^{*} commute elementwise; by a symmetry argument all the conjugates of F^{\prime} contained in G_{m+1} commute elementwise and hence the sfield F_{m+1} that they generate is a field. Then by induction we see that $F_{n}=\bar{F}$ is Abelian as was to be shown. This proves the theorem.

Lemma 3. If M is a noncommutative subsfield of K and if $N(M)$ $\neq N^{2}(M)$ then $N(M)$ is of index 2 in $N^{2}(M)$ and $Z^{\prime}(M)$ is the only other conjugate of M^{\prime} contained in $N(M)$. Furthermore $N^{2}(M)$ is its own normalizer in K^{\prime} and $N^{2}(M) \neq K^{\prime}$ provided that the center of M contains at least 5 elements of the center of K.

Proof. Suppose $N(M) \neq N^{2}(M)$ and that $N(M)$ is of index $m>2$ in $N^{2}(M)$. Then there are at least three conjugates $M^{\prime}, M^{* \prime}$ and $M^{* * \prime}$ contained in $N(M)$ and having $N(M)$ for normalizer. It follows from Lemma 2 that any two of these are in the centralizer of the third and since $N(M)$ is the normalizer of each, the sfield generated by each pair is in $N(M)$. Now since M is not commutative there is an x in M, x not in $Z(M)$. Since M and M^{*} are distinct conjugates there is a y in M^{*}, not in M. Then $x+y$ is not in M nor in $Z(M)$. But this contradicts Lemma 1 since both $x+y$ and $x+y+1$ are in $N(M)$ since they are in the centralizer of M^{*}. We conclude that if $N(M) \neq N^{2}(M)$ then $N(M)$ is of index 2 in $N^{2}(M)$.

Now when $N(M)$ is of index 2 in $N^{2}(M)$ then there is at least one conjugate $M^{* \prime}$ of M^{\prime} in $N(M) . M^{*}$ is contained in $Z(M)$ and in fact is equal to $Z(M)$; for if M^{*} were properly contained in $Z(M)$ then by symmetry M would be properly contained in a sfield H such that H^{\prime} is in $N(M)$. But then by Lemma 2, H would be contained in $Z(M)$, whence M would be also and hence M would be Abelian contrary to hypothesis. We conclude that M^{*} must be equal to $Z(M)$.

Now if $M^{* * \prime}$ were another conjugate of M^{\prime} in $N(M)$ then $M^{* *}$ would be contained in $Z(M)=M^{*}$ which contradicts the fact that one conjugate cannot be contained in another. We conclude that there are only two conjugates of M^{\prime} in $N(M)$ when the index of $N(M)$ in $N^{2}(M)$ is 2 as the lemma asserts.

The following Lemma is now needed to finish the proof of Lemma 3.

Lemma 4. There are no noncommutative subsfields L and M of K such that $L \cap N(M)$ is of index 2 in L^{\prime} provided that the center of M contains at least 5 elements of the center of K.

Proof of Lemma 4. Let L^{*} denote $L \cap N(M)$. We shall show first that every x in L^{*} is either in M or in $Z(M)$. For suppose there is an x in L^{*} but not in M nor in $Z(M)$. Then by Lemma $1, x+1$ and $x-1$ are not in L^{*} and since the index of L^{*} in L^{\prime} is 2 it follows that $(x+1)(x-1)=x^{2}-1$ must be in L^{*} as is also x^{2}. It follows again from Lemma 1 that x^{2} must be in M or in $Z(M)$.

Now if the characteristic of the sfield is not 2 or 3 , let $a=1, b=3$, $c=2$, and $d=-1$. If the characteristic is 3 let $a=c=1$ and let b and d be distinct elements of M in the center of K but not 0,1 , or 2 . If the characteristic is 2 let a, b, c, d be elements of M in the center of K but not 0 or 1 and such that $a+b \neq 0, a+b+1 \neq 0$ and $a=c$, $d=b+1$. Then none of the elements $x+a, x+b, x+c, x+d, x+a+1$, $x+b-1, x+c+1, x+d-1$ is in L^{*} so that $(x+a)(x+b)=x^{2}+(a+b) x$ $+a b$ is in L^{*} as is also $(x+a+1)(x+b-1)=x^{2}+(a+b) x+(a+1)$ $\cdot(b-1)$. It follows again from Lemma 1 that $x^{2}+(a+b) x+a b$ and hence $x^{2}+(a+b) x$ is in M or in $Z(M)$. Similarly by using c in place of a, d in place of b we see that $x^{2}+(c+d) x$ is in M or in $Z(M)$. But then two of the three elements $x^{2}, x^{2}+(a+b) x, x^{2}+(c+d) x$ are in the same sfield M or $Z(M)$ and by subtraction of one from the other we see that x is also there contrary to the supposition that x was neither in M nor in $Z(M)$. We conclude that every element of L^{*} is in M or in $Z(M)$.

Now if L^{*} were in M or if L^{*} were in $Z(M)$ then that sfield contains all the squares of elements of L since L^{*} is of index 2 in L^{\prime} and hence contains L itself since by Theorem 5 of [2] the square elements of a noncommutative sfield generate the whole sfield. This, of course, means that L is contained in M and hence $N(M)$ contrary to the fact that $L \cap N(M)$ is of index 2 in L.

On the other hand, if there are elements x and y of L^{*}, x in M but not in $Z(M)$ and y in $Z(M)$ but not in M then $x y$ is in L^{*} but in neither M nor $Z(M)$ contrary to what was shown above. This proves Lemma 4.

We now continue the proof of Lemma 3. If $N(M) \neq N^{2}(M)$ and if $N^{2}(M)$ is not its own normalizer then there is a conjugate N^{*} of $N(M)$ also of index 2 in $N^{2}(M)$ and in N^{*} a conjugate $M^{* * \prime}$ of M^{\prime} such that either $M^{* * \prime} \cap N(M)$ is of index 1 or 2 in $M^{* * \prime}$. We rule out the possibility of this index being 2 because of Lemma 4 , while if the index is 1 then $M^{* * \prime}$ is contained in $N(M)$ and there are three distinct
conjugates of M^{\prime} in $N(M)$ contrary to the first statement of the lemma already proved. This concludes the proof of Lemma 3.

Theorem 2. If M is a proper noncommutative subsfield of a sfield K containing at least 5 elements of the center of K, then M^{\prime} is not subinvariant in K^{\prime}.

Proof. Suppose $M^{\prime} \Delta G_{1} \Delta G_{2} \Delta \cdots \Delta G_{n}=K^{\prime}$ and suppose r is the largest integer so that G_{r} is contained in $N^{2}(M)$. Then $r \neq n$ since $N^{2}(M) \neq K^{\prime}$ by Lemma 3. Now if y is any element of G_{r+1} then y transforms M^{\prime} into a conjugate $M^{* \prime}$ contained in G_{r} and hence in $N^{2}(M)$. It follows from Lemmas 3 and 4 that M^{*} is either M or $Z(M)$ and hence y is in $N^{2}(M)$; consequently G_{r+1} is also in $N^{2}(M)$ contrary to the choice of r. We conclude that M^{\prime} cannot be subinvariant in K^{\prime}.

Bibliography

1. Richard Brauer, On a theorem of H. Cartan, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 619-620.
2. L. K. Hua, Some properties of sfields. Proc. Nat. Acad. Sci. vol. 35 (1949) pp. 533-537.

Louisiana State University

