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Although arising from different motivations Moore spaces2 and

uniform spaces [7] are generalizations of metric spaces which have

considerable similarity. This can be seen from the following character-

izations by means of open coverings:

Let .S be a regular Hausdorff space.

If there exists a family {G} of open coverings of S such that

(a) {G} is countable and3

(b) if U is an open set and pEU, there is an element G of {G}

such that GP*E U, then 5 is a Moore space and conversely [6].

If there exists a family {G} of open coverings of 5 such that

(a') if Gi and G2 are elements of {G} there is an element C73 of

{G} which is a star refinement of both Gi and G2 and

(b) if U is an open set and pEU, there is an element G of {c7}

such that GP*E U, then 5 is a uniform space4 and conversely [5].

Of course if a {G} exists so that all three conditions (a), (a') and

(b) hold true simultaneously, 5 is metric.6 Except for the obvious fact

that the Hausdorff first countability axiom must hold true for Moore

spaces while it need not do so for uniform spaces, it is by no means

obvious that they differ otherwise.

L. F. McAuley has given an example of a normal semi-metric

Hausdorff space 5 which is not a Moore space [3]. Being normal, 5

is both regular and uniform and being semi-metric, the first countabil-

ity axiom holds true for S.

I give below an example of a locally connected, connected, complete

Moore space6 containing a point p at which it is not completely regu-

lar. Hence it is not uniform [2 or 5]. This space is obtained by piecing

together along their boundaries adjacent terms of a simple sequence
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2 A Moore space is a space satisfying Axiom 0 and parts (1), (2), and (3) of Axiom

1 of [4]. A complete Moore space is one satisfying Axioms 0 and 1 of [4].

3 If G is a covering of S and p is a point of S, Gp denotes the collection of all ele-

ments of G which contain p and Gp* denotes the sum of the elements of Gr.

* More precisely, S has a uniform structure whose topology agrees with the

topology of S.

5 However there exist spaces which are both Moore spaces and uniform spaces

but which are not normal and hence not metric. The space A given below is such a

space.

6 Such a space will be arc-wise and locally arc-wise connected.
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of non-normal Moore spaces which converges to p.

The space A. Let the points of A be the points on or below the

x-axis in a Cartesian plane. Regions (i.e., basis elements for the topol-

ogy of A) are of two types:

(a) if p is a point of A not on the x-axis, let the interior of a circle

centered on p and missing the x-axis be a region, and

(b) if p is a point of the x-axis, let the point set consisting of p

plus the interior of an isosceles triangle with vertex at p and base

parallel (and below) the x-axis be a region when the vertex angle

equals its adjacent sides.

The reader may easily verify using regions of rational diameter in

constructing {G} that:

(1) A is a complete Moore space,

(2) A is connected and locally connected and

(3) in A the x-axis is a discrete point set.

Lemma. The x-axis is the sum of two mutually exclusive uncountable

sets A and B such that if U is an open set in A containing uncountably

many points of one of them, then U in A contains uncountably many

points of the other.

Proof. Express the x-axis as the sum of two mutually exclusive

sets A and B such that any uncountable closed (in the usual topology

of the x-axis) subset of the x-axis intersects both A and B. Let U be

an open set in A which intersects one of these sets, say A, in an un-

countable set. Now suppose that UB is vacuous or countable. De-

fine a function / from the x-axis to the non-negative real numbers as

follows: For each point x of the x-axis let/(x) be the altitude of some

region in A which contains x but no point of A— U (if such a region

exists); otherwise let/(x) be zero. As a function of a real variable (the

usual topology for the x-axis) / is continuous at every point of

B — TJB and discontinuous at each point of UA. Since the set of

all points of discontinuity of / is the sum of countably many closed

(relative to the x-axis) sets, at least one of these closed sets C is un-

countable and intersects B in at most countably many points. Hence

some uncountable closed subset of C fails to intersect B. This is a

contradiction.

Construction of the space A*,. Let Ai, A2, A3, • • • be a simple

infinite sequence of disjoint A-spaces congruent to A. (For con-

venience the reader may think of these as lying in different planes of

3-space parallel to the plane of A.) For each n, let Hn be the point set

in A» which corresponds (by congruence) to the (arbitrary) point set

///in A.
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Points of A*, are of three types:

(1) if y is a point of ^i+E" [K-(An+Bn)}, y is a point of A„;

(2) if n is odd and x is a point of B, then the pair (xn, xn+i) is a

point of A*,; and if n is even and x is a point of A, then the pair

(x^ x„+i) is a point of AM;

(3) finally adjoin one "ideal" point p (distinct from all the above)

to AM.

Regions (i.e., elements of a basis for the topology of AM) are of three

types:

(1) if y is a point of type 1 belonging to A„, a region in A„ contain-

ing y but not intersecting a point of type 2 is a region in AM;

(2) if (xn, x„+i) is a point of type 2 and Rn and P„+1 are regions in

A„ and A„+i containing xn and xn+i respectively, then the set consist-

ing of (xn, xn+i) together with the points of (P„ — x„) + (P„+i — x„+i)

is a region in AM; and finally

(3) for each m, p together with the points of AM of types 1 and 2

which do not intersect E"=i A* is a region Rn of AM.

Now one may verify that the space AM has the following properties:

(1) A,,, is a complete Moore space;

(2) Ax is connected and locally connected;

(3) the boundaries Cn of regions Rn containing p form a sequence

Ci, C2, Cz, ■ • ■  converging to p;

(4) AM is completely regular at every point except p; but

(5) AM is not completely regular at p.

Proof of (5). Suppose that there exists a continuous function g

from Aco to the real number interval [0, l] such that g(p)=0 and

g(y) = l for yG-4i- Let Ui= {x: g(x) <1/2J. For some m, Cn [see (3)

immediately above] is a subset of Ui. It follows from the lemma that

Vi contains uncountably many points of C»_i. Let c72={x:g(x)

<3/4J; then U2 contains uncountably many points of Cn-i and U2

contains uncountably many points of Cn-i- Letting <73={x:g(x)

<7/8| and continuing in this manner back toward Ai (at most n

times) one sees that for uncountably many points y of Ai, g(y) <1.

This is a contradiction.
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